
Paper FC02

Data Standards with and without CDISC
Sy Truong, Meta-Xceed, Inc, Fremont, CA

Data Standard Scenarios

New Data
Structures

CDISC
SDM v3

Approach 1:
From Scratch

Approach 2:
Existing Standards

CDISC
SDM v3

Existing Internal
Data Standards

New Data
Structures

ABSTRACT
Data standards can make data and its associated programs
more portable. Team members who work with the data
also become more portable since they can understand and
use data with more ease. This makes the development
and validation of SAS programs within a regulated
environment much more efficient. This paper will present
strategies on working with the new CDISC Submission
Data Model version 3.0 along with other data standard
strategies that are independent of CDISC. Some of the
approaches include:

1. Automated evaluation of existing data structures
against CDISC standards

2. Automated evaluation of existing data structures
and formats among each other

3. Designing new data standards from existing data
structures PORTABILITY OF DATA

Establishing data standards and applying the standards
across all studies and projects can be resource intensive. It
is reasonable to ask the question whether it is worth all the
effort. One of the key benefits is that the programs
associated with this data become more portable. They can
be moved from one study to the next with minor
modifications. Not only are the programs more portable,
the programmer and statistician working on one study can
understand a new study with the same structure relatively
quickly compared to learning a new set of programs,
macros and data structures. The productivity gain is
sometimes difficult to measure but, in the long run, it will
outweigh the efforts invested in standardizing.

The practical concepts of these techniques are
demonstrated through both a manual process and tools
such as %cdisc and %difftest. The meticulous review of
data attributes among all the data is an important step
towards achieving data standards. Automating this
process makes the task less mundane, as well as catches
non-standard differences that are not easily caught
through manual verification.

INTRODUCTION
There are two general approaches towards achieving data
standards. If you are starting from scratch, it makes sense
to use a suggested standard such as CDISC. In this case,
the effort will be in ensuring that new data created
adheres to this standard. A second approach is when you
already have existing data that is structured very different
from CDISC standards. In this case, the task is to make
sure that all existing data structures follow an internal
standard. Any new data created would then need to
adhere to this new standard. It is more common for the
second scenario to occur. This paper will examine both
scenarios and suggest techniques along with tools to assist
you in these approaches.

IMPLEMENTING CDISC
The new version of CDISC Submission Data Model (SDM)
version 3.0 is radically different from version 2.0. This
means that if you were implementing the standards set by
version 2, you almost have to start over. However, if you
are just beginning to set up standards, and there is no
history from any legacy systems, adapting to CDISC SDM
is a smoother transition. In this case, your main goal is to
ensure that when you create a new dataset, you have a
method of ensuring that the new variables and associated
attributes adhere to the CDISC standards. The standards
referenced in this paper are found at:
http://www.cdisc.org/pdf/V3CRTStandardV1_2.pdf. There are

http://www.cdisc.org/pdf/V3CRTStandardV1_2.pdf

two aspects to the strategy presented in this case. The
first is a non-technical procedural component which
includes methodologies and the second is comprised of
tools that can help the process.

If there is more than one team member in your group, it is
essential that you establish Standard Operating
Procedures (SOPs) for data standards. Not only are these
required by regulations, they can help the group work
together. A common approach is to have someone on
your team be assigned the role of the Metadata
Administrator who acts as the point person pertaining to
all data submission standards. This narrows down the
scope from other data sources such as operational source
data or exploratory analysis data that is not intended for
submission. The Metadata Administrator is the gate
keeper to all new attributes of variables and datasets.
Their responsibility is to ensure that new proposed names
adhere to standards while also maintaining existing
attributes and retiring old attributes that are no longer
valid. This centralized approach ensures that standards
are established consistently and that they are enforced.
The Metadata Administrator can work with the rest of the
team to establish SOPs and tasks pertaining to:

New Data New datasets defined for a particular
study

New Variables New variables and associated
attributes defined within a particular
data domain

Reconciliation Reconciling differences among
metadata between studies

Retirement Retiring old dataset attributes and/or
associated variables that are no
longer used

It is useful that these SOPs be documented. In the event
that the primary Metadata Administrator is not available,
a backup person can take over. It is also important from a
regulatory standpoint, since if SOPs are not documented,
it is perceived that the effort was done haphazardly or that
it was never done at all.

Once the procedure is put into place, tools can be
implemented to help the Metadata Administrator be more
effective. There can be separate tools for each of the tasks
mentioned above in the SOPs. The one discussed in this
paper is named %cdisc which assists in the reconciliation
of differences in metadata between studies against CDISC
standards.

MANUAL STANDARDIZATION STEPS
Before automated tools were created, the steps taken to
ensure standards were done manually. These steps can be

used to work with CDISC standards and also with existing
data standards.

STEP 1: Capture all metadata from the complete set of
datasets included in the submission.

*** Capture metadata of the Adverse
Event data ***;
proc contents data = datalib.ae
 out=m_ae;
run;

This is done by applying a PROC CONTENTS on each
dataset. A separate dataset is generated to contain the
metadata of each dataset. This can be stored in the work
area for evaluation.

STEP 2: Review and identify the variables that are found
in more than one dataset.

*** Compare the metadata between
datasets ***;
proc compare data=m_ae
 compare=m_demog;
run;

This can be accomplished by reviewing the output
visually and/or using PROC COMPARE to help identify
differences and similarities.

STEP 3: Review and identify the variables and attributes
that match CDISC standards. The following tasks can be
identified from the standards. The list consists of a short
name for the task followed by a reference number to the
CDISC document in parenthesis, followed by a
description of the task.

1. Required Fields: (2.4.5) Required identifier
variables including: DOMAIN, USUBJID,
STUDYID and --SEQ.

2. Subject Variable: (3.5.1.2.8) For variable names,
labels and comments, use the word ʺSubjectʺ
when referring to ʺpatientsʺ or ʺhealthy
volunteerʺ.

3. Variable Length: (3.5.1.2.6) Variable names are
limited to 8 characters with labels up to 40
characters.

4. Yes/No: (3.5.1.3.18) Variables where the response
is Yes or No (Y/N) should normally be populated
for both Yes and No responses.

5. Date Time Format: (3.5.1.4.19) Use yymmdd10.
but yymmdd8. is acceptable.

6. Study Day Variable: (3.5.1.4.22) Study day
variable has the name ---DY.

7. Variable Names: (3.5.2) If any variable names
used match CDISC variables, the associated label
has to match.

8. Variable Label: (3.5.2) If any variable labels used
match CDISC labels, the associated variable has
to match.

9. Variable Type: (3.5.2) If any variables match that
of CDISC variables, the associated type has to
match.

10. Dataset Names: (3.5.2) If any of the dataset
names match CDISC, the associated data label
has to match.

11. Dataset Labels: (3.5.2) If any of the dataset labels
match CDISC, the associated dataset name has to
match.

12. Abbreviations: (3.5.2) The following
abbreviations are suggested for variable names
and data sets.

• DM Demographics

• CM Concomitant Medications

• EX Exposure

• AE Adverse Events

• DS Disposition

• MH Medical History

• EG ECG

• IE Inclusion/Exclusion Exceptions

• LB Labs

• PE Physical Exam

• SC Subject Characteristics

• SU Substance Use

• VS Vital Signs

13. SEQ Values: (4.3.2.1) When the --SEQ variable is
used, it must have unique values for each
USUBJID within each domain.

STEP 4: Ensure that all other attributes of the variables
that matched with CDISC standards also adhere to the
standards. This is a manual visual process of comparing
the results from the PROC CONTENTS with the list of
tasks to ensure that standards are being applied.

AUTOMATING VERIFICATION TASKS
The same tasks performed in the previous section can be
automated through a macro named %cdisc. This macro is
made available as a free download at http://www.meta-
x.com/sydata/cdisc_download/. The %cdisc macro is part of a
larger toolset named Sy/Data™. This macro simplifies the

previous steps since all that is needed is that the user
specifies the libname and the dataset in which to perform
the standards evaluation.

%cdisc (datlib = data library,
 datname = dataset name);

Where Is Type... And represents...
datalib C (200) Library name referencing the location

where the dataset resides.

datname C (200) Name of the dataset to be verified.
Wild cards can be specified such as
ae*.

This macro systematically goes down the list of
verification tasks to verify all attributes of your data
against that set by the CDISC guidelines. For example, if
you use a standard variable SEX in your data that was
defined in the guidelines, but you have defined a different
label or length, this will be highlighted in a resulting
report.

 --- Findings from CDISC Evaluation ---

 Data
 Library Table Variable Variable Case
Obs Name Name Name Label Number

 1 templib cdisc9 1
 2 templib cdisc9 1
 3 templib cdisc9 1
 4 templib cdisc9 SEX WRONG LABEL 7

Obs Comments

 1 Data Missing Variable USUBJID
 2 Data Missing Variable STUDYID
 3 Data Missing Variable --SEQ
 4 Variable name matches guidelines but not label

In this example, the results highlight Test Case Number 1
which includes required fields and also Test Case 7 which
it describes as “Variable name matches guidelines but not
label”. The descriptive comments state what the user
should be aware of in the event that his data is diverging
from the standard. This report is generated by default but
the information is also available in a temporary dataset
named WORK.CDISC. This gives users more flexibility by
using their own favorite SAS procedure or ODS to extend
the reporting possibilities.

This macro can be even easier to use through a graphical
user interface implemented in SAS/AF. In this case, the
selection of dataset becomes as simple as selecting items
from a list.

http://www.meta-x.com/sydata/cdisc_download/
http://www.meta-x.com/sydata/cdisc_download/

STANDARDS WITHOUT CDISC
The strategy of comparing datasets being created with
CDISC guidelines is a great method for catching standard
deviations. However, many users decide not to follow
CDISC standards. This is due to a number of reasons. It
could be that their studies started prior to the current
CDISC guidelines and therefore it is too much effort to
convert. It could also be that the data were standardized
to version 2 of the CDISC guidelines or to an internal
standard that is not compatible with version 3. In many
circumstances, the standards being implemented are not
the latest CDISC guidelines and therefore the previous
approach is not applicable.

Standards are still essential even if your approach is not in
line with CDISC. In this event, you can follow a similar
series of steps. However, you are no longer just
comparing your data with the prescribed CDISC
guidelines, but rather performing the verification against
other SAS datasets that contain your own standards.

STEP 1: Capture all metadata from the complete set of
datasets included in the submission. This can be
accomplished with PROC CONTENTS.

STEP 2: Review and identify the variables that match any
attributes found in comparison with the standard dataset
along with other data submitted. This can be
implemented by using PROC COMPARE.

STEP 3: Ensure that all attributes of the variables which
are found in more than one location match up and align
with each other. This can be accomplished by reviewing
the output of the PROC CONTENTS to ensure that all

other attributes are the same. The following test criteria
are used to perform your comparisons.

1. For variables with the same name across different
datasets, verify that the following attributes are
the same:

a. Type

b. Length

c. Label

d. Format Name

e. Informat Name

2. For variable labels that are the same, verify if the
corresponding variable names are the same.

3. For format names that are the same, verify if the
coded values of the formats are the same.

4. For format codes that are the same, verify if the
format names are the same.

5. For dataset names that are the same, verify if the
dataset labels are the same.

6. For dataset labels that are the same, verify if the
dataset names are the same.

7. For variables with coded formats, verify if the
values in the data match up with the specified
format codes.

The above steps no longer rely on CDISC as a comparison
benchmark, but rather your own internal standards. This
standard is comprised of a set of datasets and format
catalogs that you maintain for each domain, such as
demographic data, adverse events, concomitant drugs,
etc… By applying the comparisons between your data
against this set of standard datasets, you can quickly
identify deviations and make the changes to adhere to the
set standards. This step can be revealing in that, for some
instances, it may lead you to change your standards if you
find that it make more sense to follow the example of the
new data.

AUTOMATING COMPARISONS
In the same way that %cdisc can be applied to CDISC
standards, the %difftest macro is used to compare
differences among datasets for determining internal
standards. In this case, rather than comparing all the
target datasets to one base model, the %difftest compares
all the permutations between the datasets selected. For
example, if you have three datasets: DEMOG, AE and
CONMED, the comparisons made to each other are
similar to performing a Cartesian join between the base
and target datasets, with the exception of making
comparisons to itself.

Obs base target

 1 CONMED CONMED*
 2 CONMED DEMOG
 3 CONMED AE
 4 DEMOG CONMED
 5 DEMOG DEMOG*
 6 DEMOG AE
 7 AE CONMED
 8 AE DEMOG
 9 AE AE*

* Excluding comparisons to itself

This approach ensures that every variable is compared.
The above Cartesian join example is created by the
following program.

data one;
 base = "CONMED"; output;
 base = "DEMOG"; output;
 base = "AE"; output;
run;

data two;
 target = "CONMED"; output;
 target = "DEMOG"; output;
 target = "AE"; output;
run;

proc sql;
 create table compare as
 select * from one, two;

quit;

This illustrates how the number of comparisons can
multiply exponentially as the number of datasets
increases. It is therefore more efficient to automate this
task rather than doing it manually.

%difftest (fpath_a ... fpath_z = format path,
 path_a ... path_z = path to the SAS data,
 dat_a1...dat_z100 = dataset name);

Where Is Type... And represents...
fpath_a - fpath_z C (200) Path location to the format

catalog which contains user
defined formats for the data.

path_a - path_z C (200) Physical path location to SAS
data used for verification.

dat_a1 - dat_a100
...
dat_z1 - dat_z100

C (8) SAS dataset name which will be
used for verification. Note that
the alpha variable following the
"dat_" matches with the name
of the path parameter. If an
asterisk is specified as a
wildcard, all datasets within the
specified path will be selected.

The macro will first perform a Cartesian join between the
data sets specified by the dat_n parameters and then loop
through the combinations to perform the seven tests
defined in step 3. The resulting differences are presented
in a report organized by each test condition. An example
for test condition 1 looks like:

DIFFTEST
Data, Variable and Format Difference Test

Test 1: Variables with the same name containing different
attributes across different datasets

 Data
Path

Data
name

Variabl
e

T
y
p
e

Len
gth Label For

mat

Info
rma
t

Base C:\temp DEATH visitno C 17 VISIT
NUMBER

$CH
AR17
.*

1

Com
pare C:\temp DEMOG visitno C 17 VISIT

NUMBER

$CH
AR9.
*

Base C:\temp DEATH specsite C 80*

PROG
DISEASE
SITE
SPECIFIED
*

$CH
AR80
.*

2

Com
pare C:\temp METAST

A specsite C 40*

ULTRASOU
ND
SPECIFIED
SITE*

$CH
AR40
.*

Base C:\temp DEATH visitno C 17 VISIT
NUMBER

$CH
AR17
.*

3

Com
pare C:\temp METAST

A visitno C 17 VISIT
NUMBER

$CH
AR9.
*

Base C:\temp DEATH othspec C 100

OTHER
EVENT
SPECIFIED
*

$CH
AR10
0. 4

Com
pare C:\temp TERM othspec C 100 OTHER

SPECIFY*
 $CH

AR10

Base C:\temp DEATH ptstatu
s C 4* *

5
Com
pare C:\temp TERM ptstatu

s C 5* PATIENT
STATUS*

* Found Difference

In this example, the datasets DEMOG, DEATH,
METASTA and TERM were compared. This report shows
how the variables have the same name across different
datasets, but their attributes differ. The differences are
highlighted with red asterisks to help you quickly identify
possible standard deviations. Differences in length or
variable type can cause significant problems if this is a key
variable used in a merge. SAS label differences are
sometimes intentional but many times it makes more
sense to keep variables consistently labeled. There are
many subtle differences that can occur which are
challenging to catch with visual inspection.

Similar to the %cdisc tool, there is an accompanying
graphical user interface for %difftest to make the selection
of datasets and format catalog easier.

Applying a difference test comparison on all your data is a
good way of maintaining a standard but it can also be
used to set up new standards. In the case where you have
a lot of legacy data and you are just starting out with
setting up new standards, an analysis of the similarities
and differences is a good way to identify new standards.
Even if you have standards already established, this
method helps in refining the standards once you see how

they compare to data that is being used. A Metadata
Administrator implements data standards in a similar way
to how software is released. For example, the first set of
data standards version 1.0 would be considered. Once it
has been compared to real data being used, you may see
that it makes more sense to alter and update your
standards. Changing variable attributes standards
incrementally can cause change control problems among
users trying to keep up and adhere to the standards. You
can choose to group the changes in logical steps, such as
those dealing with a particular domain, and update the
standards to version 2.0. A practical approach is to collect
all the enhancements and wait until a pivotal point in a
project is completed before implementing the next version
of data standards. An example of this is when a series of
studies are completed for a FDA submission; you would
then roll out the data standards for the next set of new
studies.

PUBLISHING AND ENFORCEMENT
Once standards are established, one of the main
challenges is to enforce the standards. This is most
effectively done through awareness, training along with
clear communication between the Metadata Administrator
and the end users. There are many forms in which this
communication can take shape. The methods described in
this section are intended to minimize resource drain on
the administrator, while optimizing the “bandwidth” of
communication to as many users as possible. The
approaches are shown in steps starting with the easiest
methods and moving to higher levels of sophistication.

STEP 1: Generate a report of all the standard metadata for
each data domain and deliver this to the user. This can be
as simple as a PROC CONTENTS of a sample data
standard. Accompanying each metadata report is a
sample SAS code segment used to define the structure.
For example:

*** Define the Subject Demographic data
***;
data demog (label="Subject
Demographics");
 attrib USUBJID length=$40
 label="Unique Subject Identifier";
 attrib STUDYID length=$80
 label="Study Identifier"
 attrib SUBJID length=$20
 label="Subject Identifier";
 attrib BRTHDTM length=8
 label="Date/Time of Birth"
 mat=yymmdd10.; for
 ...
run;

It is recommended that this information be available in
electronic form so that users can cut and paste it into their
programs. This can be emailed to users and referenced at
a central file location on a server.

STEP 2: Make the data standards accessible via an intranet
website. The reports mentioned in step 1 are useful on a
central file server. However, navigating to it can be
cumbersome compared to a hyperlink. Periodic email
updates can include the attached information but a
hyperlink which users can bookmark makes it a more
useful destination.

The use of hyperlinks can be further implemented as a
drill down throughout the report with a summary of the
domain as the main table of contents.

STEP 3: Have all the attributes of the metadata searchable
within the standard library. It is optional to have the
search applied to specific attributes such as labels or
variable names. However, for simplicity, the default
search applies to all attributes.

A search engine can greatly improve the efficiency of how
users navigate to a specific data standard. This approach
is an extension of step 2 since it accompanies the same
website. It can be implemented with standard PROC SQL

or SAS data step queries when developed with
SAS/IntrNet.

All the steps mentioned above are effective ways of
publishing the information. It would be ideal to have all
the steps implemented if resources are available. The
same information can be “pushed” to users by providing
training sessions or emailing or delivering hard copy
reports. On the other hand, it can also be useful to have
users “pull” the information from a centralized server.
Both methods can be employed to increase the chances
that users would adhere to an evolving and often
changing standard.

CONCLUSION
Data standards are potent tools in becoming more
effective and efficient during your analysis programming
and reporting. Accomplishing standards leads to
portability of data between studies, while also increasing
the mobility of team members between projects. This can
increase consistency of data for accuracy and decrease
validation efforts. Depending on the history and
environment of your data, it can be beneficial to use
CDISC or develop your own internal data standards. In
either case, it is important to stage the release of standards
within your group at logical time points to avoid dramatic
changes to existing standard software. Once you have
your data standards applied, the maintenance can be
automated to a degree. There are many attributes to
manage, so the use of automated tools will help keep the
administrator on top of all the meticulous details, while
also maintaining a global view of all data. Structures such
as SOPs and assigning an administrator are important in
deriving and maintaining standards. The metadata
administrator can employ traditional instructor-based
training during the roll out of standards. However, taking
advantage of tools and techniques of Intranet publishing
will increase the success of users’ acceptance of standards.

REFERENCES
SAS and all other SAS Institute Inc. product or service
names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates
USA registration.

Sy/Data and all other Meta-Xceed, Inc. product names are
registered trademarks of Meta-Xceed, Inc. in the USA.

Other brand and product names are registered trademarks
or trademarks of their respective companies.

ABOUT THE AUTHOR
Sy Truong is a Systems Developer for Meta-Xceed, Inc.
They may be contacted at:

Sy Truong

48501 Warm Springs Blvd. Ste 117

Fremont, CA 94539

(510) 226-1209

sy.truong@meta-x.com

