

Paper AD04

CDISC for electronic submissions - A Table Translation Program
John H. Adams, Boehringer Ingelheim Pharmaceutical, Inc., Ridgefield, CT
Kirill Tchernakov, Boehringer Ingelheim Pharmaceutical, Inc., Ridgefield, CT

ABSTRACT
This paper outlines a SAS® program that automatically translates a pharmaceutical company’s data to the CDISC
submissions data standards (SDS) model format for FDA e-submissions. The program was added as a new function, called
CDISCDOMAIN, to the XPDL system. A paper by John Adams, ‘XPDL – An Extensible Project Database Loading and
Table Translation Program’, was previously presented at the NeSug 2003 and PharmaSUG 2003 conferences .

The new CDISCDOMAIN macro program , along with another XPDL function, can easily translate one or more sources of data
into a CDISC standard domain. So no matter what your current data format structure or format is, you can quickly translate it
into the CDISC format, without programming resources!

Generic templates for each CDISC domain were developed to reflect the SDS model. In their pure form, they contain the
metadata that represents the CDISC requirements. Then by adding some additional information, such as variable attribute and
sourcing information we created EXCEL template sheets that are used to directly drive the CDISCDOMAIN program. When
CDISC models are updated in the future, only templates need to be updated, not the program.

INTRODUCTION

A drug project in the pharmaceutical industry typically produces a lot of data that must be analyzed for efficacy, safety, drug
interactions, demographics, etc. before reports are prepared for submission to the FDA. These days, such submissions must
be made electronically, sometimes call e-submissions. All data used to support these e-submissions must also be shipped to
the FDA electronically.

CDISC is an industry consortium that is establishing standards for the exchange of digital information. The FDA has endorsed
the CDISC standards approach to providing data in e-submissions. By submitting tabulations that conform to the standard
structure, the industry can benefit by no longer having to submit separate patient profiles. Reviewers also benefit by only
needing training in the principles of standard datasets and the use of standard software tools.

Unfortunately, most pharmaceutical companies do not keep their data in the CDISC standard format. Therefore, there was
always a crunch at submission time to transform their internal data structure to the desired FDA format. This effort required a
lot of ad-hoc programming and data verification.

XPDL, a dynamic SAS® macro program, makes this task easy (see the referenced PharmaSug 2003 publication on XPDL).
The program can combine and re-map data for any number of trials to create a translated CDISC domain without custom
programming. XPDL uses tables (EXCEL® spreadsheets) to control the process of combining and re-mapping of trial data.
These tables contain the metadata that describes the source-to-target data relationships and any required re-mapping of
variables.

The newly added XPDL function called CDISCDOMAIN is the macro program that, along with another XPDL function,
translates the source data into a CDISC standard domain. So no matter what your current data format structure or format is,
you can quickly translate it into the CDISC format, without programming resources!

Generic templates for each CDISC domain were developed to reflect their SDS model. In their pure form, they contain the
metadata that represents the CDISC requirements. Then by adding some additional information, such as variable attribute and
sourcing information we created EXCEL template sheets that are used to directly drive the CDISCDOMAIN program. When
CDISC models are updated in the future, only templates need to be updated, not the program.

By using the appropriate XPDL functions a lot of programming resources will be saved, not only during the initial e-submission
, but also on future filings. The savings in time and quality are immense.

The code behind this program is quite complex and lengthy and therefore will not be shown or explained in this paper.

1.0 PRELIMINARIES

This type of application is not, by the nature of the complexities, be a ’push button’ operation. It will require some human
intervention, choices to be made, etc. CDISCDOMAIN automates as many tasks as possible. So, before starting on a mission
to establish a CDISC domain, we must first do some planning and preparation. Normally, the generic CDISC templates for the
domains are prepared only once and can then be shared by all trials and/projects.

When we wish to create an actual CDISC domains for our submission, we must take a copy of it’s generic template and
complete the rest of the template to make them trial or drug project specific. Before starting the process for each domain, we
must, of course, decide which CDISC standard domains are appropriate for our submission. Keep in mind that we may also
have to provide additional data to the FDA for non-standard domains, if the submission warrants it.

For a given domain, we must first decide which of the non-core’ variables need to be included in that domain in order to
support the submission. We must also identify the various data sources and their locations for each of the selected domain
variables (core + optional). Sources can be any combination of SAS® views/datasets at local or remote locations.

Furthermore, we need to decide on the necessary derivations for variables that are not directly available. We also must fill in
the ‘ACTION keywords’ in the template, where necessary, to control the formation of the domain variable map. Actual SAS®
code for derivations can also be entered in the appropriate field. This will drive the automatic generation of SAS® macros.

The creation of this final pre-pared template is extremely important as it represents the ‘cook book’, used by CDISDOMAIN,
for creating a CDISC domain variable map. This CDISC domain variable map is later used by another XPDL function
(PDBLOAD) to actually create the actual CDISC domain SAS® dataset. The ‘road map’ depicted in Fig. 2 shows this process.

2.0 FUNCTIONALITY

XPDL has 15 major functions. The table in Fig. 1, however, only shows those functions that are germane to this paper:

 Fig. 1 – XPDL Functions used for creating CDISC domains

FUNCTION PROGRAM PURPOSE PROGRAM FUNCTIONS

NEWPDB Starts a new database
• compare trial views/ and variables
• create an all variable list
• create a domain-view map

CDISCDOMAIN
Makes a new CDISC
domain

• read CDISC template
• read the all variable list and domain-view

map
• create a CDISC domain-variable map
• flag problems to be corrected / edited

LOADPDB Loads data to PDB • build a dynamic load pgm
• run the load program to create the dataset(s)

Let’s look at the steps needed to create a CDISC database, as shown in roadmap of figure 2.
We must first start with a one-time call to the NEBPDB function. A sample call with the NEWPDB function is relatively simple:

 %XPDL(
 function=NEWPDB, xlslib=xls_fold,
 mapfile =domain_view_map_v1,
 listfile=all_var_list_v1,
 funcopt =< study=s0348_0024 folder=stable type=views location=remote
 locpath=$RXC_SAS_DATA;

 study=s0348_0025 folder=current type=views location=remote
 locpath=$RXC_SAS_VIEW;

 study=s0348_0026 folder=sb001a type=data location=network
 locpath=!clinrep/newdrug;
 >

) ;

DATA
SOURCES
(TRIALS /
STUDIES)

SOURCE DATA
LOCATIONS

SOURCE DATA
TYPES

SOURCE DATA Sub-
FOLDER NAMES SOURCE DATA

FOLDER NAMES

XPDL
call

PATHS FOR DATA SOURCES
(SYMBOLIC NAMES)

FIG. 2 – ROADMAP FOR CREATING CDISC DOMAINS

#

#

##

#

create

Data sources
(trials or PDB)

NEWPDB

CDISCDOMAIN

Create Formats
and update
derivation macros

EXCEL Edit

LOADPDB

All Vars
List

WRITEXLS

READXLS

View
Map

Domain
Variable
s Maps

READXLS

WRITEXLS

Domain D/S

Domain D/S

Domain D/S

CDISC
DATABASE

Domain
Template

View
Map

update

Macro,
source
code

update

create

create

create

Repeat this
block for
each
domain

Process flow Data flow

XPDL function SAS Macro

EXCEL Programming

LEGEND:
Note: #1, #2, #3, #4 are the sheet type numbers as described in Figure 3-5

A XPDL call with the NEWPDB function creates two types of XLS spreadsheets, as seen in Figures 3 and 4.

 Fig. 3 – Layout of the ‘all variables list’ sheet as produced by the NEWPDB function (# 1)

Column Name Column Description Note

Domain Name of project domain

Viewname Study view / dataset name
Varname Study variable name
Varlabel Study variable label

Fixed column
names

STUDY1-STUDYn Study1_foldername- Studyn_foldername

VARTYP1-VARTYPn Study1_variable_type- Studyn_variable_type
VARFMT1-VARFMTn Study1_variable_fmt- Studyn_variable_fmt

VARLEN1-VARLENn Study1_variable_length-
Studyn_variable_length

SDYLOC1-SDYLOCn Study1- Studyn data_location [remote or
network]

SDYPAT1-SDYPATn Path_to_Study_data_locations
SDYLVL1-SDYLVLn Subdirectory_folder_of_Study_folders

One set
per Study

(n= # studies)

 NOTES: 1. This sheet contains information about all available source data variables, their

attributes and their locations.
 2. This sheet is used by XPDL functions and is normally not edited by the user.

 Fig. 4 – Layout of the ‘domain-view map’ sheet as produced by the NEWPDB function(# 2)

Column Name Column Description Note
Domain Name of project domain

Active YES or NO, is domain actively loaded?
Desc Description of domain

Dvarmap Name of domain variable map spreadsheet
Viewname Name of study view or dataset

SDYFOL1-SDYFOLn Study1_foldername- Studyn_foldername

SDYLVL1-SDYLVLn Study1_sub_foldername-
Studyn_sub_foldername

SDYLOC1-SDYLOCn Study1_folder_location-
Studyn_folder_location

SDYPAT1-SDYPATn Study1_folder_path- Studyn_folder_path

One set
per Study

(n= # studies)

 NOTES: 1. This sheet contains summary information about all available source data

views/datasets and their locations.
 2. This sheet is created initially by XPDL and at times user edited. It is used by

XPDL functions.

The next step on our roadmap (Fig.2) to creating a CDISC domain is to run the CDISCDOMAIN function. This function will
create a domain variables map based on the information in a template. Before we do that, however, we must first create a this
domain template sheet (# 4). Figure 5 shows the layout of a template.

 Fig. 5 – Layout of the of CDISC domain template (# 4)

Column Name Column Description Note
Domain3 Name of project domain
Prjvar2,3 Name of project domain variable
Prjvlbl Project domain variable label
Prjkey INDEX, MERGE, MERGE1,etc
Prjtyp Project domain variable type (C,N)
Prjfmt Project domain variable format
Prjlen Project domain variable length

Domain variable
attributes

Prjvdef Action key for project domain variable PrjVar Action
Pdyview Study view / dataset name
Pdyvar Study view / dataset variable name

Data Source
Information

Corevar Is variable required? (Y,N)
Prjvcom Comments and notes

General
Information

 NOTES: 1. These sheet are created and heavily edited by the user. They are used by XPDL

function(s).
 2. Names that start with a ‘?’ are not active and will not be included in the final domain.
 3. Do not place any comments in these columns (Domain and Prjvar) below the

regular row.

Let’s look at an actual sample of a completed ‘DM’ CDISC domain template (see Fig. 6). The figure is well annotated as to
what it’s columns are and how they are used in the creation of a domain variable map, which will be used to translate the
data.

Fig. 6 – Sample of a completed CDISC DM domain template (# 4)

DOM
AIN

PRJ
VAR PRJVLBL PRJ

KEY
PRJ
TYP

PRJ
FMT

PRJ
LEN

PRJ
VDEF

PDY
VIEW PDYVAR CORE

VAR PRJVCOM

DM Studyid Study Identifier C $15. 15 PATD STUDY Y

DM Domain Domain
Abbreviation C $2. 2 _DEFINE_ PATD DM Y

CDISC uses a 2
character domain
name

DM Usubjid
Unique
Subject
Identifier

 C $30. 30 PATD UNQPTNO Y Unique identifier
within the submission

DM Subjid
Subject
Identifier for
the study

 C $30. 30 PATD PTNO Y
Often used as ID of
the subject within the
study

DM Refdtm
Subject
Reference
date/time

 N 8. 8 E_TRT
EXP ATRSTDT Y

Time when subject
entered trial (in
seconds from
01jan1960)

DM Refdtmp Refdtm
Precison N 8. 8 _DEFINE_ PATD 60 Y

 Precision of Refdtm=
Minute (units =
seconds)

DM Siteid Study Site
Identifier C $10. 10 PATD INVSITE Y

DM Invade Investigator
Identifier C $10. 10 _DELETE

_ N Not needed if
Invade=Siteid

DM Invar Investigator C $20. 20 PATD INVNAME N

DOM
AIN

PRJ
VAR PRJVLBL PRJ

KEY
PRJ
TYP

PRJ
FMT

PRJ
LEN

PRJ
VDEF

PDY
VIEW PDYVAR CORE

VAR PRJVCOM

Name

DM Brthdtm Date/Time of
Birth N 8. 8 PATD BTHDT N

Time when subject
was born (in seconds
from 01Jan1960)

DM Brthdtmp Precision of
Birthdtm N 8. 8 _DEFINE_ PATD 86400 N

Precision of
BTHDT=Day
(units=seconds)

DM Age Age at
REFDTM N 8. 8 _CODE_ PATD

Age= REFD
TM-

BRTHDTM;
Y

Age at REF date/time
(derived:REFDTM-
BRTHDTM) in AGEU
units

DM Ageu Age Units C $8. 8 _DEFINE_ PATD YEARS Y
Units for age
[YEARS, MONTHS,
DAYS]

DM Sex Sex C $1. 1 PATD SEX Y Male,Female,Unknow
n [M,F,U]

DM Race Race C $20. 20 PATD RACEP Y May become optional
in the future

DM Ethnic Ethnicity C $20. 20 PATD MIXRAC N Ethneticity of subject

DM Trtcd Treatment
Code N 8. 8 PATD PRJTRT Y

Treatment code -
Numeric version of
Trtgrp

DM Trtgrp Treatment
group C $40. 40 PATD TPATT Y Treatment group

DM Country Country C $20. 20 PATD COUNTRY Y
Country where
subject participated in
trial

DM Weight Weight in
kilograms N 8. 8 PATD WTSTD N Weight in kilograms

DM Height Height in
centimeters N 8. 8 PATD HTSTD N Height in centimeters

DM Complt Completers
Population C $1. 1 TTM PTERM N Subject completed

study? [Y,N]

DM Safety Safety
Population C $1. 1 POPU POPU N

Subject included in
safety population?
[Y,N]

DM Itt Intent to treat C $1. 1 RAND RANDELP N Subject randomized
for treatment? [Y,N]

DM Pprot Protocol
population C $1. 1 POPU POPUNY N

Subject included in
protocol analysis
dataset? [Y,N]

DM Visit Visit name C $20. 20 PATD CPEVENT N May be dropped in
the future

DM Visitnum Visit number N 8. 8 PATD ACTEVENT Y
Use Visitnum, Visitdy
or both (at least one
is required)

DM Dmdtm Data collection
Date-time N 8. 8 PATD VISDT Y

SAS date-time when
demo was collected
(in seconds)

DM Dmdtmp Dmdtm
precision N 8. 8 _DEFINE_ PATD 86400 Y

Precision of
Dmdtm=day (units =
seconds)

DM Dmdy Data collection
day N 8. 8 _DERIVE

_ PATD Y
Day # relative to
Refdtm (derived:
Refdtm-Dmdtm)

The Action Key words in the PRJVDEF column of the template controls the process in the CDISCDOMAIN function.
The summary table in Fig. 7 shows how the various Action Key words and how they affect and control the tasks of
the function.

DATA SOURCE:
View and
Variable names

Action KEY
WORDS

Domain
Name Domain

Variable
Name

Domain variable attributes
Required
variable?

Fig. 7 – Action Key words descriptions

COLUMN NAME in the TEMPLATE SHEET

PRJVDEF3 PRJVAR1,3,4 PDYVIEW3 PDYVAR3
DESCRIPTION

blank Project
varname

Source
viewname

Source
varname

A PRJVAR is directly sourced from a variable
(named in PDYVAR field) in view/dataset
(named in PDYVIEW field)

CODE Project
varname

Source
viewname SAS code

A ‘Study-View’ derivation macro will be
automatically created with the actual SAS code
from the PDYVAR field. (each statement ends
with a ‘;’).

This macro will be called during processing of
the defined PDYVIEW.

DELETE
Project

varname blank blank PRJVAR will not be in the final Domain (Can
only be used where COREVAR=N)

DEFINE
Project

varname
Source

viewname blank

A ‘Study-View’ derivation macro will be
automatically created which will set PRJVAR to a
constant value.

This macro will be called during processing of the
PDYVIEW.

DERIVE
Project

varname viewname blank

A ‘Study-View’ derivation macro shell will be
automatically created (containing only a
comment). You must code the actual macro logic
before using the domain.

This macro will be called during processing of the
PDYVIEW.

NOSOURCE
Project

varname blank blank This PRJVAR will be in the final domain but will
not be sourced (it will always be empty).

NOTES:

1 PRJVAR names that start with a ‘?’ are not active and will not be included in the final domain
varmap.

2 Each row in the template must have entries in all fields (PrjVdef , PrjVar, PdyView, PdyVar), unless
‘blank’ is shown.

3 Use only single values in these columns for each row.
4 Do not place any comments in columns Domain and Prjvar below the regular rows

So now that we have a completed template (like that in Fig. 6), we are ready to execute the CDISCDOMAIN function.
Following is a sample call to create a CDISC DM domain variables map (with a layout as per Fig. 8) with a template:

ACTION KEY WORD

%XPDL(
 function =CDISCDOMAIN,

 xlslib =xls_fold,

 cdslib =xls_temp,

 pgmref =mac_file,

 listfile =all_var_list_v1,

 mapfile =CDISC_view_map_v1,

 funcopt =< domname=dm

 cdsfile=CDISC_DM domfile= CDISC_db_DM_v1 macfile=yes repl_dom=yes;

 ..more domains........;

 >
);

Notes: 1. Each line in FUNCOPT defines a domain and ends with a ‘;’ . The template specifies the
structure and sourcing of the final domain.

 2. CAUTION- If you use CDISCDOMAIN again for an existing domain with the same ‘domain
variables’ map sheet name and repl_dom=yes the sheet will be overwritten.

 3. This function updates the view map automatically and makes the domain ‘active’.
 4. This function creates the macro source file automatically and creates the macro links in the

variables map (if macfile=yes).

The CDISCDOMAIN function produces a domain variable map based on the specified template. Keep in mind that it
is this map that will control the actual data loading of the final CDISC domain later on. Fig. 8 shows a layout of a
domain variable map sheet.

 Fig. 8 – layout of a domain variables map produced by CDISCDOMAIN function (# 3)

NOTES: 1. This sheet is created initially by the CDISCDOMAIN function and then heavily
edited by the user. It is later used by the PDBLOAD function to create the
actual CDISC dataset.

2. Names starting with a ‘?’ are not active and will not be included in the final domain
3. Do not place any comments in these columns (Domain and Prjvar) below the

regular rows

Column Name Column Description Note
Domain3 Name of project domain
Prjvar2, 3 Name of project domain variable
Prjkey =INDEX if variable has needs to be indexed

Prjvcomp Comparison / error edit flag
Prjvlbl Project domain variable label
Prjtyp Project domain variable type
Prjfmt Project domain variable format
Prjlen Project domain variable length

Sdyview Study view / dataset name
Sdyvar Study view / dataset variable name
Sdylbl Study view / dataset variable label

Fixed column
names

STUDY1-STUDYn Study1_foldername- Studyn_foldername
VARTYP1-VARTYPn Study1_variable_type- Studyn_variable_type

VARFMT1-VARFMTn Study1_variable_format-
Studyn_variable_format

VARLEN1-VARLENn Study1_variable_length-
Studyn_variable_length

One set
per Study

(n= # studies)

‘All Variables ‘Spreadsheet Name

XPDL spreadsheet folder Libref

Templates spreadsheet folder Libref

Macro folder fileref (req if macfile=yes)

‘View map’ Spreadsheet Name

CDISC
TEMPLATE NAME

‘DOMAIN VAR MAP’
SHEET TO CREATE

AUTO CREATE
DERIVATION
MACROS ?

REPLACE DOMAIN ?
(IF IT EXISTS)

Domain Name

XPDL
call

You must edit the domain variable map (created by the CDISCDOMAIN function) to make any necessary changes in
the metadata. Once the domain variable map is final and considered correct, we can make a XPDL call with the
PDBLOAD function to actually create the CDISC domain dataset. Following is a sample call to load three domains:

 %XPDL(
 function=LOADPDB,
 xlslib =xlsin, pgmref=pgmin,

 mapfile=CDISC_domain_map_production_V1,

 funcopt=< pdbloc=remote

 pdbpath=$RXC_SAS_DATA/Project_data/PDB_data/current

 domname=dm ae cm run=yes;
 >

);

3.0 REAL EXAMPLES

In this section we would like to illustrate the CDISC table translation process by presenting a ‘real life’ example. It
involves a recent electronic submission (including data in CDISC format) to the FDA for one of our drug projects.
Since we already had our project database (consisting of multiple trials) built (with XPDL) for this drug, we decided to
use it as a direct data source instead of going to each particular trial data that constitutes the project.

 Our first step involved running the NEWPDB XPDL function in order to start a new CDISC database:

libname xlsin 'S:\MEDICAL\data\SAS\CLINREP\IND\CDISC_pdb\data\test';

%XPDL(
 function =NEWPDB, xlslib=xlsin, runopt = mprint debug = yes,
 mapfile =CDISC_domain_map_v1, listfile=CDISC_db_list_v1,
 funcopt = <
 study= test folder=pdb20040127 type=data
 location=remote
 locpath=/u05/home/ocpaps/sas_data/ocprus/s1182_PDB;
 >
);

The above XPDL macro call caused the following (please see the referenced articles for a full NEWPDB description):

1. Connected to original data source (our existing project database) on our remote UNIX server (using locpath
and location parameters).

2. Selected the folder and subfolder where the source datasets resides (by specifying study and folder
parameters).

3. Specified the type of data to use (type=data means SAS datasets, whereas type=view means SAS views
into Oracle Clinical tables).

4. Created maps of the data sources relationships in two Excel spreadsheets :
a) the ‘domain-to-view’ map (CDISC_domain_map_v1)
b) the ‘all-variables’ map (CDISC_db_list_v1). These data relationships are also referred to as

metadata.

Use domname= _ALL_
to load all active domains

Domain-view map file

Location of database

Path to
CDISC data
folder

Load data for
ONLY these
domain(s)

XPDL
call

The appropriate domain
variable maps will be
selected with these

The sample XPDL call with the NEWPDB function produced a ‘domain-to-view’ map with a lay-out as per Fig 4.
Essentially, the metadata in this map contains the data source names and their location attributes. Some of this
information will be edited by the user. The contents of the partial map for this example are shown in Fig.9 .

Fig 9. ‘Domain-to-view’ map generated by the NEWPDB function

DOMAIN ACTIVE DESC DVARMAP VIEWNAME SDYFOL1 SDYLOC1 SDYLVL1 SDYPAT1
ACTG NO ACTG test remote nda20040524 $RXC_SAS_DATA/s1182_PDB
ACTGADQ NO ACTGADQ test remote nda20040524 $RXC_SAS_DATA/s1182_PDB
ADM NO ADM test remote nda20040524 $RXC_SAS_DATA/s1182_PDB
ADQ NO ADQ test remote nda20040524 $RXC_SAS_DATA/s1182_PDB
AEAEA NO AEAEA test remote nda20040524 $RXC_SAS_DATA/s1182_PDB
HIVAIDS NO HIVAIDS test remote nda20040524 $RXC_SAS_DATA/s1182_PDB
AIDSILL NO AIDSILL test remote nda20040524 $RXC_SAS_DATA/s1182_PDB
ARV_MED NO ARV_MED test remote nda20040524 $RXC_SAS_DATA/s1182_PDB
BDYC NO BDYC test remote nda20040524 $RXC_SAS_DATA/s1182_PDB
CTCT NO CTCT test remote nda20040524 $RXC_SAS_DATA/s1182_PDB
COMP NO COMP test remote nda20040524 $RXC_SAS_DATA/s1182_PDB
CPUG NO CPUG test remote nda20040524 $RXC_SAS_DATA/s1182_PDB
DIARY NO DIARY test remote nda20040524 $RXC_SAS_DATA/s1182_PDB
PATD NO PATD test remote nda20040524 $RXC_SAS_DATA/s1182_PDB
POPU NO POPU test remote nda20040524 $RXC_SAS_DATA/s1182_PDB
RAND NO RAND test remote nda20040524 $RXC_SAS_DATA/s1182_PDB
TTM NO TTM test remote nda20040524 $RXC_SAS_DATA/s1182_PDB
ECG NO ECG test remote nda20040524 $RXC_SAS_DATA/s1182_PDB

Please note that the DOMAIN and VIEWNAME columns in the above ‘Domain-to-view’ map show all available
project database (PDB) data sources (views or datasets) for our drug project. The other columns, named
SDYPAT1, SDYFOL1, SDYLVL1 and SDYLOC1, represent additional information about these data sources, e.g.
path, folder name, sub-folder name and data location (remote or local), respectively.

Since our data source was a project database, the above table only shows a single data source like a single trial (we
only have column names with a 1 suffix). Please note that none of the CDISC domains are active yet (active=NO) in
the above example, as have not created any of the required ‘domain variable maps’ yet (this will be done later with
the CDISCDOMAIN function).

The second Excel® spreadsheet of metadata that was created simultaneously by the NEWPDB call is the ‘all-
variables’ map (CDISC_db_list_v1.xls). Essentially, the metadata in this map contains the ‘variables’ attribute
information about all variable in the data sources. FIG. 10 shows the partial content for the example.

Please note that the first two columns on the left (VIEWNAME and VARNAME) show the original PDB variable and
domain names. The last four columns on the right represent one study set (study=test, in this case) and carry
variable attribute information about each variable (type, format, length). There can be many study sets (our sample
only shows one because we used a PDB as source).

This limited metadata example shows a number of source variables from two domains (PKBLD and POPU PDB). For
instance, variable TMDIF comes from the PKBLD domain and has the following attributes: numeric type with a format
of ‘20.‘ and length of ‘8’ . Variable ATPATT is sourced from the POPU domain and has the following attributes :
character type, ‘$8.’ as a format and ‘8’ as a variable length. Please note that this map is used by other XPDL
function and should never edited by the user.

 Fig 10. ‘All-variables’ map generated by the NEWPDB function.

VIEWNAME VARNAME VARLABEL STUDY1 VARTYP1 VARFMT1 VARLEN1
PKBLD TMDIFF Time Difference: Actual-Planned test N 20. 8
PKBLD TMDIFFR Time difference actual - planned RTV test N 20. 8
PKBLD TMDIFFT Time Difference Actual - Planned TPV test N 20. 8
PKBLD TMDIFFU Time difference unit test N UNIT2F. 8
PKBLD TMDIFFV Time Difference Actual Planned- Vitals test N 20. 8
PKBLD TMDIFUV Time Difference Unit- Vitals test N UNIT2F. 8
PKBLD TPATT Project Study Treatment group test C $PRJTRT. 15
PKBLD UNQPTNO Universal Patient ID test C $16. 16
PKBLD USUBJID Universal Patient ID test C $30. 30
PKBLD VISDT Visit date test N DATE8. 8
POPU ADMDT Treatment Start Date test N DATE9. 8
POPU ATPATT Actual Treatment Group test C $8. 8
POPU ATPATTDC Actual Treatment Group Decode test C $60. 60
POPU ATPATTSR Actual Treatment Group Sort Code test C $8. 8
POPU ATRSTDT Actual Treatment Start Date test N DATE9. 8
POPU DRGSTPDT Drug Discontinuation Date test N DATE9. 8
POPU POPU Population test C $16. 16
POPU POPUDC Population Decode test C $60. 60
POPU POPUNY Included in Population test N YN1F. 8
POPU POPUX Population Comment test C $200. 200
POPU PTNO Patient Number test N 10. 8
POPU STUDY Trial Number test C $15. 9
POPU TERML Reason for Withdrawal test N TERMC1F. 8

The next step in the CDISC process (refer to the roadmap in Fig.2) is to create a new CDISC domain variable map.
This is accomplished by using the newly introduced CDISCDOMAIN XPDL function.

 As it was mentioned before, the CDISCDOMAIN function reads a previously established CDISC domain template to
get it’s ‘instructions’ on how to create a CDISC domain variable map. It then reads the ‘all-variables’ and domain-to-
view maps to create a CDISC domain variable map, using the ‘instructions’ from the template.

This function also verifies the metadata and flags problems that need to be corrected by user editing.

Below is an example of our AE (Adverse Events) CDISC domain creation with the CDISCDOMAIN function:

libname xlsin 'K:\MEDICAL\data\MEDDAT95\SAS\CLINREP\Tipranavir\CDISC_pdb\data\test';
libname cdsin 'K:\MEDICAL\data\MEDDAT95\SAS\CLINREP\Tipranavir\CDISC_Templates';
filename pgmin 'K:\MEDICAL\data\MEDDAT95\SAS\CLINREP\Tipranavir\CDISC_pdb\macros';

%XPDL(
 function=CDISCDOMAIN, xlslib=xlsin, cdslib=cdsin, pgmref=pgmin,
 listfile=CDISC_db_list_v1,
 mapfile=CDISC_domain_map_v1,
 funcopt =< domname=ae
 domfile=CDISC_db_AE_v1
 cdsfile=CDISC_AE
 macfile=yes;
 >
);

In the above call, xlslib, cdslib and pgmref are XPDL’s spreadsheet folder, template folder and macro folder library
references, respectively. Listfile and mapfile are the file names for our ‘all-variables’ and ‘domain-view’ maps
(CDISC_db_list_v1.xls and CDISC_domain_map_v1, respectively) that were created in a previous example for the
NEWPDB function. Parameter Macfile=yes means to auto-create the derivation macros for the AE domain during the
XPDL macro call.

Shown in FIG. 11 below is the partial AE domain CDISC template that was used in the above call. This template is
critical in the running of the CDISCDOMAIN function.

As you can notice from this figure, there are several ACTION KEYS in the AE template to control the formation of the
domain variable map. For instance, in rows where PRJVAR= Domain, AeStDtm and AeEndTm the corresponding
PRJVDEF values are equal to _DEFINE_. That means that constants should be establish for these three variables
(as specified in PDYVAR column: ‘ AE’, ‘66400’ and ‘66400’, respectively).

In other rows, you also see _DERIVE_, _CODE_ and _NO_SOURCE_ action keys specified (in the PRJVDEF
column) for those project variables.

An example where PRJVDEF = _DERIVE_ (variables AeStDy and AeEnDy) means that CDISCDOMAIN will code a
derivation macro for each in the SAS® AE_macro file (if macfile=yes).

The code for each derivation is defined in the PDYVAR column and described in the PRJVCOM column (if
PDYVAR= empty, then an empty shell macro will be coded).

For instance, variables AeStDy and AeEnDy will be created with manually coded derivation macros, defined as
follows in our AE macro file:

%macro DER_0001;
 AeStDy = AEONDT-REFDTM;
%mend;

%macro DER_0002;
 AeEnDy = AEENDDT-REFDTM;
%mend;

On the other hand, in rows (of the AE template in Fig.11) where PDYVAR=AeStDtm and AeEndTm,
CODE was specified in the PRJVDEF column. The actual corresponding derivation code for each
PDYVAR was provided in the PDYVAR column. Thus, when running, the CDISCDOMAIN function
automatically created the following two macros:

%macro DER_003 ; /** Code the Derivation for : AeStDtm **/ ;
 hr=hour(aeontm);
 mn=minute(aeontm);
 if aeontm eq . then do;
 hr=0;
 mn=0;
 end;
 AeStDtm=dhms(aeondt,hr,mn,0);
%mend ;

%macro DER_004 ; /** Code the Derivation for : AeEndTm **/ ;
 hr=hour(aeendtm);
 mn=minute(aeendtm);
 if aeendtm eq . then do;
 hr=0;
 mn=0;
 end;
 AeEndTm=dhms(aeenddt,hr,mn,0);
%mend ;

As you can see, the feature for automating the task of SAS® macro code generation is very powerful and convenient.
Please see Fig. 7 for a description on all other action keys.

The final product of CDISCDOMAIN function call was a domain variable map according to the CDISC
specifications(defined in domain template). By looking at Fig 12. we can see partial listing of the final AE domain

variables map, as produced for the example.

D
O
M
A
I
N

PRJVAR PRJVLBL

P
R
J
K
E
Y

P
R
J
T
Y
P

PRJF
MT

PRJL
EN PRJVDEF PDYVI

EW PDYVAR

C
O
R
E
V
A
R

PRJVCOM

AE Studyid Study
Identifier C $15. 15 AEAEA STUDY Y

AE Domain Domain
Abbreviation C $2. 2 _DEFINE_ AEAEA AE Y CDISC uses a 2 character

domain name

AE Usubjid
Unique
Subject
Identifier

 C $30. 30 AEAEA UNQPTNO Y

AE AeSeq Sequence
Number N 8. 8 _DERIVE_ AEAEA Y

Sequence number to ensure
uniqueness in domain
(Derive)

AE AeTerm
Reported
Term for
Adverse
Event

 C $50. 50 AEAEA AEMNM Y
The verbatim term of the
event

AE AeStDtm
Start
Date/time of
Event

 N 12. 12 _CODE_ AEAEA

Hr=hour(aeontm);
Mn=minute(aeontm);
If aeontm=. Then do;
Hr=o; mn=0;
Aestdtm=dhmr(hr,mn,0);
End;

Y

Start date/time for an adverse
event in seconds from
01/01/1960 (DERIVE AS
AESTDTM = AEONYMD|
AEONTM)

AE AeStDtmp Precision of
AESTDTM N 8. 8 _DEFINE_ AEAEA 86400 Y Precision of AeStDtm in

seconds

AE AeEndTm End date/time
of Event N 12. 12 _CODE_ AEAEA

Hr=hour(aeendtm);
Mn=minute(aeendtm);
If aeendtm=. Then do;
Hr=o; mn=0;
Aeendtm=dhmr(hr,mn,0);
End;

Y

End date/time of adverse
event in seconds from
01/01/1960 (DERIVE AS
AEENDTM =AEEENDYMD |
AEENDTM))

AE AeEndTmp Precision of
AEENDTM N 8. 8 _DEFINE_ AEAEA 86400 Y Precision of AeEndTm in

seconds

AE AeStDy Start Day of
Event N 8. 8 _DERIVE_ AEAEA Y

Day of start of adverse event
relative to REFDTM (AESTDY
= AEONDT-REFDTM)

AE AeEnDy End Day of
Event N 8. 8 _DERIVE_ AEAEA Y

Day of end of adverse event
relative to REFDTM (AEENDY
= AEENDDT-REFDTM)

AE Visitnum Visit Number N 8.2 8 AEAEA ACTEVENT N
Added to domain since AEs
are not all collapsed on a
period x period basis

AE AeModify Modified
reported Term C $30. 30 _DELETE_ N

If AETERM is modified as part
of procedure , then modified
text goes here

AE AeDecod
Dictionary-
Derived Text
Description

 C $50. 50 _DERIVE_ AEAEA MPT Y
Dictionary-derived text
description of AETERM or
AEMODIFY

AE AeBodSys
Body System
or Organ
Class

 C $200. 200 _DERIVE_ AEAEA MSOC Y

Body system or organ class
(primary SOC) for the adverse
event (from MEDDRA)
(DERIVE from %XMEDTRM
macro)

AE AeTrtEm Treatment
Emergent C $2. 2 _DERIVE_ AEAEA AETRT Y

Was the event emergent ?
[Y, N] (DERIVE as 'Y' if
AETRT not "Screening", "Off-
drug period", "Post-study"
else 'N' when not blank)

AE AeSev
Severity/Inten
sity C $10. 10 AEAEA AEINT Y

The severity of the event
[MILD, MODERATE,
SEVERE]

AE AeSer Serious
Criteria C $1. 1 AEAEA AESERA Y Is this a serious event? [Y, N]

AE AeAcn
Action Taken
with Study
Treatment

 C $50. 50 AEAEA AEACTA Y
Describes changes to study
treatment as a result of the
event

AE AeAcnOth Other Action
Taken C $50. 50 _DELETE_ N Describes other action taken

as a result of the event

AE AeRel Causality C $40. 40 _CODE_ AEAEA AEREL =
put(aereln,aerelf.); Y

Investigator's opinion to the
causality of the event to
treatment [DEFINITELY NOT
RELATED, POSSIBLY
RELATED, PROBABLY
RELATED, etc]

AE AeRelOth

Relationship
to OTHER
(NON-
STUDY)
TREATMENT

 C $20. 20 _DELETE_ N

Investigator's opinion to the
causality of the event to non-
study treatment [DEFINITELY
NOT RELATED, POSSIBLY
RELATED, PROBABLY
RELATED, etc]

AE AeOut Outcome of
Event C $20. 20 _CODE_ AEAEA AEOUT=

put(aeoutn,aeoutf.); Y
Description of the outcome of
the event [RECOVERED,
RESOLVED, FATAL, etc]
(E2b values)

Fig 11. CDISC AE domain template.

Fig. 12. The AE CDISC domain variables map, as produced by the CDISCDOMAIN function
DOMAIN PRJVAR PRJVLBL PRJVC

OMP
PRJKE
Y

PRJT
YP

PRJF
MT

PRJLE
N

SDYVIEW SDYVAR
ST
UD
Y1

VARF
MT1

VAR
LEN
1

VAR
TYP
1

AE Studyid Study Identifier Ok C $15. 15 AEAEA STUDY test $15. 9 C
AE Domain Domain Abbreviation Ok C $2. 2 AEAEA %DER_016 test
AE Usubjid Unique Subject Identifier Ok C $16. 16 AEAEA UNQPTNO test $16. 16 C
AE AeSeq Sequence Number Ok N 8. 8 AEAEA %DER_011 test

AE AeTerm
Reported Term for Adverse
Event Match C $50. 50 AEAEA %DER_019 test $50. 50 C

AE AeStDtm Start Date/Time of Event Ok N 12. 12 AEAEA %DER_012 test
AE AeStDtmp Precision of AESTDTM Ok N 8. 8 AEAEA %DER_013 test
AE AeEndTm End Date/Time of Event Ok N 12. 12 AEAEA %DER_003 test
AE AeEndTmp Precision of AEENDTM Ok N 8. 8 AEAEA %DER_004 test
AE AeStDy Start Day of Event Ok N 8. 8 AEAEA %DER_014 test
AE AeEnDy End Day of Event Ok N 8. 8 AEAEA %DER_002 test
AE Visitnum Visit Number Added N 8.2 8 AEAEA ACTEVENT test 8. 8 N

AE AeDecod
Dictionary-Derived Text
Description Ok C $50. 50 AEAEA %DER_023 test $200. 200 C

AE AeBodSys Body System or Organ Ok C $200. 200 AEAEA %DER_001 test
AE AeTrtEm Treatment Emergent Ok C $2. 2 AEAEA %DER_015 test
AE AeSev Severity/Intensity Ok C $10. 10 AEAEA AEINT test AEINTP 8 N
AE AeSer Serious Criteria Ok C $1. 1 AEAEA AESERA test YNS1F 8 N

AE AeAcn
Action Taken with Study
Treatment Ok C $50. 50 AEAEA AEACTA test AEACT 8 N

AE AeRel Causality Ok C $40. 40 AEAEA %DER_018 test YN1F. 8 N
AE AeOut Outcome of Event Ok C $20. 20 AEAEA %DER_017 test AEOUT 8 N
AE ?AeDur Duration of Event Ok N 8.2 8 AEAEA AEDUR test 11. 8 N
AE ?AeDurU Units of Time for AEDUR Ok C $10. 10 AEAEA %DER_022 test
AE AeOngo Ongoing Adverse Event? Ok C $2. 2 AEAEA %DER_005 test

AE AeSCong
Congenital Anomaly or Birth
Defect Ok C $2. 2 AEAEA %DER_006 test

AE AeSDisab
Permanent/Serious/Disable/I
ncapacitating Ok C $2. 2 AEAEA %DER_007 test

AE AeSDth Results in Death Ok C $2. 2 AEAEA %DER_008 test

AE AeSHosp
Requires or Prolongs
Hospitalization Ok C $2. 2 AEAEA %DER_009 test

AE AeSLife Is Life Threatening Ok C $2. 2 AEAEA %DER_010 test

AE AeSOth
Other Medically Important
Serious Event Match C $2. 2 AEAEA %DER_021 test

AE AeSOthC
Dscr of Other Med Impt
Serious Event Added C $25. 25 AEAEA %DER_020 test

AE AeConTrt
Concomitant or Additional
Trtmnt Given Ok C $1. 1 AEAEA AETHPA test YN1F. 8 N

AE AeCom Comment Match C $200. 200 AEAEA AEX test $200. 200 C

As you can see from the structure of the above domain variable map, it looks just like a conventional domain variable
map (as created by the NEWDOMAIN and MODDOMAIN functions). However in this case, all project level variables
and their attributes correspond to CDISC established standards. Some minor editing of this map was required (The
editing process for domain variable maps is described in detail in the referenced articles) .

 Now we were ready to upload the actual data into the CDISC domain, the final step on the roadmap in Fig.2. That is
accomplished with the standard XPDL LOADPDB function (see the referenced paper), which is no different from the
conventional PDB loading process. So what we have done, in essence, is to use the CDISCDOMAIN function with a
template (that defines what the CDISC domain should like) to create a domain variable map (that defines the data
translation) and use that variable map to create or load our final domain dataset.

The following XPDL call was used to actually load the data into the final AE CDISC domain dataset:

%XPDL(function=LOADPDB, xlslib=xlsin,
 mapfile=CDISC_domain_map_v1, pgmref=pgmin,
 funcopt=< pdbloc =local
 pdbpath=K:\MEDICAL\data\MEDDAT95\SAS\CLINREP\IND\CDISC_pdb\Test_Data
 domname=ae sdy_var=studyid saspgm=c:\windows\temp\ae.pgm
 run =y debug =Y;
 >
);

The major parameters in the above call are the same as described in section 2 (FUNCTIONALITY). Parameter
mapfile refers to the same domain-to-view map we created with NEWPDB function and subsequently edited (as
described in the referenced paper). So, after the final editing of our CDISC_domain_map_1.xls , the CDISC ‘domain-
to-view’ sheet looked like below the sample in Fig. 13 (partial, only the AE domain associated records are shown).

Fig. 13 – Partial Sample ‘domain-to-view’ sheet

DOMAIN ACTIVE DESC DVARMAP VIEWNAME SDYFOL1 SDYLOCSDYLVL1 SDYPAT1
AE YES CDISC_db_AE_v1 ADQ test remote nda20040524 $RXC_SAS_DATA/s1182_PDB
AE YES CDISC_db_AE_v1 AEAEA test remote nda20040524 $RXC_SAS_DATA/s1182_PDB

Additional spreadsheet editing may be required after initial runs of the PDBLOAD function in order to produce correct
results (as described in the referenced paper). After completing all of the editing, the final PDBLOAD run will produce
an actual CDISC_AE domain dataset, which is subjected to a rigorous QC process. The final dataset (not shown
here) is then converted to a SAS transport file before submitting to FDA.

The main advantage of the described above process is that even if the CDISC standards change in the future, say a
new version, there is no need to change the XPDL macro coding. All the changes could be quickly applied to CDISC
domain templates directly, without direct involvement of programming resources. The savings of time and resources
for our process were tremendous and greatly helped us in keeping our submission to FDA ahead of target..

4.0 CONCLUSION

A powerful generic CDSIC Domain translator / loader has been created by combining the power of a SAS® ‘data
driven’ program with the power of EXCEL® spreadsheets. The templates and spreadsheets, maintained by non-
programmers, provide the documentation and also drive the CDISC domain creation and loading process.

XPDL with the new CDISCDOMAIN function has been be a tremendous success. A recent multi-trial e-submission
was accomplished with XPDL and a dedicated team in record time. The cost savings for programming and data
management resources, lower maintainability costs, higher quality of database / translation documentation all
combine to make this macro a ‘must have’ addition to the software toolkit in the pharmaceutical industry.

REFERENCES

1. PharmaSug 2003 paper : XPDL – An Extensible Project Database Loading and Table translation Program’ by

John Adams.
2. NeSug 2003 paper : XPDL – An Extensible Project Database Loading and Table translation Program’ by John

Adams.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the primary author at:

John H. Adams
 Boehringer Ingelheim Pharmaceutical, Inc.
 900 Ridgebury Road
 Ridgefield, CT, 06877-0368
 Work Phone: 203-778-7820
 Fax: 203-837-4413
 Email: jadams@rdg.boehringer-ingelheim.com
 adamsjh@mindspring.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

