ABSTRACT
Prostate cancer is one of the most common cancers affecting males. With the existence of patients resistant to their current therapies, there is need to understand mechanisms of resistance that enable patients to progress to more aggressive forms such as mCRPC. Two cohorts of patients were collected through external collaboration and their samples were profiled for biomarkers associated with cancer. Measurements included CTC (circulating tumor cell) counts, and gene expression values in blood enriched for CTCs measured via qPCR (quantitative polymerase chain reaction). Various approaches were applied and compared to identify resistance genes, addressing the confounding between gene expression profiles and CTC counts.

INTRODUCTION
In the era of constant advancement in biomarker data generation and precision medicine, predictive and prognostic tests have become hallmarks of the new generation of cancer therapeutics. To take a precision medicine approach to the management of advanced prostate cancer, we sought to develop a peripheral blood circulating tumor cell (CTC)-based test to identify patients most likely to benefit from antiandrogen therapies. In this paper, we will describe a strategy taken to implement this approach and present relevant resources and methods.

STUDY DESCRIPTION
In this multi-institutional prospective cohort study, men with advanced prostate cancer were enrolled prior to starting antiandrogen therapies. At baseline, 12 weeks, and progression, peripheral blood samples were collected and profiled for circulating tumor cell (CTC) counts (Truini et. al., 2014) and gene expression analysis measuring levels for a subset of genes. It was shown previously (Scher et al., 2016) that CTC0 conversion (circulating tumor cell nonzero at baseline and 0 at 3 months) had the highest discriminatory power for overall survival. CTC0 conversion was used as an early readout for the response within this cohort. Baseline gene expression data from patients with CTC0 conversion were used for univariate analysis and to develop predictive models. The results were contrasted, and models were then compared using different performance characteristics.

DATA ANALYSIS
Typically, the steps for data analysis can be divided into three major categories:
1. Relevant Data Collection, Pre-processing and Cleaning
 This step includes obtaining relevant data and context; cleaning noisy, missing and inconsistent data; combining the data from multiple sources, and data transformations
2. Exploratory Data Analysis (Tukey, 1977)
 A method of looking at data that does not include modeling and inference (can be graphical and non-graphical) to inform detection of mistakes, checking of assumptions, preliminary selection of appropriate models and determining relationships between variables
3. Analysis and Modeling
 Involves development of statistical models for the analysis of data to answer a research question
Analysis was executed using R: A Language and Environment for Statistical Computing (R Core Team, 2018)

DATA COLLECTION, PRE-PROCESSING AND CLEANING
In the current study, data was collected from three different sources:
1. Clinical data collected as part of the study at the following timepoints:

 - Baseline
 - P1

2. Gene expression data generated in the laboratory (Keer, 2008):

 - [Diagram of Quantitative Real-time PCR Analysis]

3. Circulating tumor cell (CTC) counts profiled via CellSearch technology (Truini et. al., 2014):

 - [Diagram of CellSearch system technology]

Data Collection, Pre-processing and Cleaning included:

- Merging the data from all the sources
- Creation of relevant variables (site, time of sample processing, CTC0 response category)
- Exclusion of missing data
- Exclusion of gene expression data with less than 10% of non-zero values
- More standard data cleaning and transformations

Modern set of R packages `tidyverse` was primarily used for data cleaning and pre-processing (Wickham, 2017).

Exploratory Data Analysis

Exploratory Data Analysis (EDA) is essential to develop an understanding of data and how it is distributed; identify sources of variability and data artifacts (including technical artifacts and outliers); and address structure within the data (especially for high dimensional data).

For the three sources of data the following techniques were applied:

1. CTC counts were summarized using histogram and table (R commands `geom_histogram` and `table`) and showed inflation of zero counts:
Gene expression data included initially about 190 genes. Genes with near zero variance were filtered, and the final set included about 140 genes. Unsupervised hierarchical clustering was applied to the latter set of genes together with principal component analysis, and pairs of genes were also plotted for more in-depth look at individual genes (R commands `heatmap.2`, `princomp`, `ggpairs`). The results showed highly correlated structure present within the data, variability explained by site and response to the treatment, as well as presence of clusters of genes:
3. Clinical data exploratory analyses included summary tables and violin plots (Hintze, 1997) which are similar to boxplots with a rotated kernel density plot on each side (R commands `table`, `geom_violin`). The results showed sizes of the response groups and their relation to the gene expression data as follows:

<table>
<thead>
<tr>
<th>Response</th>
<th>NR</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>19</td>
<td>24</td>
</tr>
</tbody>
</table>

4. Additional evaluations included technical effect of the time of sample processing and relationships between CTC counts and gene expression data (R commands `geom_point`, `geom_line`, `hist`). The results showed differences between samples profiled at 0 and 24 hours as well as strong correlations between cell counts and some genes (histogram of Spearman correlation values):
ANALYSIS AND MODELING

Equipped with the knowledge of data structure, distribution and important factors the following statistical modeling techniques were applied to the data:

1. Univariate analysis: four generalized (binomial/logit) linear models of the response were fit for each gene
 i. Model only including gene expression data
 ii. Model including gene expression data and cell count
 iii. Model including gene expression data, cell count and site
 iv. Model including gene expression data, cell count, site and the interaction of gene expression and cell count

The results were evaluated adjusting for false discovery rate and the top set of 32 genes plotted below included genes primarily overexpressed in non-responders:
2. Multivariate predictive modeling: dataset was first randomly split into training and test sets. Baseline gene expression data for the training set was used to develop a predictive model for response, starting with a panel of 141 expressed genes/isoforms including those associated with prostate cancer. Seven different types of classification models (Hastie, et.al., 2009) were applied to the test dataset with respective tuning parameters selected in a cross-validation loop:

i. Linear Discriminant Analysis (LDA) (Venables et.al., 2002)
Linear Discriminant Analysis (LDA) is a linear transformation technique commonly used for dimensionality reduction. LDA computes the directions (“linear discriminants”) that will represent the axes that that maximize the separation between multiple classes

ii. Partial Least Squares (PLS) (Barker et.al., 2003)
The Partial Least Squares (PLS) method fits linear models based on linear combinations of the explanatory variables simultaneously maximizing the covariance between the variables and the response or responses

iii. Support Vector Machines (SVMs) (Scholkopf et. al., 2002)
Support vector machines (SVMs) are a method of classification in high-dimensional spaces that find separating hyperplanes between groups of data

iv. Neural Networks (Ripley, 1996)
Neural Networks represent models based on how biological neural networks in the human brain process information. It works as an adaptive system that changes its structure during a learning phase and able to model complex relationships between inputs and outputs or to find patterns in data by building layers that takes an input and computes an output for the next layer.

v. Recursive Partitioning (Breiman et.al., 1984)
Recursive partitioning creates a decision tree that aims to correctly classify members of the population by splitting it into sub-populations based on independent variables.

vi. Random Forest (Breiman et. al., 2001)
Random forests are an ensemble method that combines several individual classification trees in the following way: From the original sample several bootstrap samples are drawn, and an unpruned classification tree is fit to each bootstrap sample. Each tree in the ensemble is built based on the principle of recursive partitioning, where the feature space is recursively split into regions containing observations with similar response values. The variable selection for each split in the classification tree is conducted only from a small random subset of predictor variables, so that the overfitting is avoided. From the complete forest the status of the response variable is predicted as an average or majority vote of the predictions of all trees.

vii. Elastic Net (Zou et. al., 2005)
Elastic net regression is a regularized regression method that optimizes the linear combination of the objective function that measures the coherence between the model and the data and the two penalties: L1 or the sum of absolute values of all coefficients, and L2 or the sum of squares of all coefficients.

The performance of all seven models is summarized below via ROC curve:
Additionally, below are the five additional characteristics of model performance (test set value in red and cross-validation in blue): accuracy, kappa, ROC, Sensitivity and Specificity. Random forest has the highest average ROC between test and cross-validated estimates:

CONCLUSION
Baseline gene expression data from patients with CTC0 conversion were used for univariate analysis and to develop seven predictive models. The results were then compared using different performance characteristics. Of the seven predictive models tested (linear discriminant analysis, partial least squares, support vector machines, neural networks, recursive partitioning, random forests and elastic net), random forest yielded the best performance, with respective cross-validation and test set sensitivities of 0.7 and 1, specificities 0.75 and 0.71, AUC 0.88 and 0.91. Top genes identified include those previously associated with disease. A prospective study with a larger number of patients will be required to further validate our findings. Ultimately, this test has the potential to select the patients most likely to benefit from antiandrogen treatment.

REFERENCES

TEAM ACKNOWLEDGMENTS
Michael J. LaRiviere, MD,1 Naomi B. Haas, MD,2 Yauheniya Cherkas, PhD,1 Karl Nielsen, MSc,3 Brad Foulk, MS,3 Jaymala Patel, MS,3 Denis Smirnov, PhD,2 David J. Vaughn, MD,2 Ravi Amaravadi, MD,2 Samantha L. Savitch, BA,2 Krishna Majmundar, BS,2 Thomas H. Buckingham, BA, BS,2 Stephanie S. Yee, MS,3 Jeremy Jones, PhD,4 Sumanta K. Pal, MD,4 Erica L. Carpenter, MBA, PhD2,3
1Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
2Division of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
4Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, California.