Integrative Analysis of Circulating Tumor Cell Counts and Gene Expression Levels

Zhenya Cherkas, PhD
Janssen R&D
Springhouse, PA

PhUSE US Connect 2019 AB03

Dorethey Gorham, *Day of the Armada*
Dorethey is a joyful, self-taught artist living with arthritis, general anxiety syndrome, and diabetes.
Disclaimer

• Employment by Janssen R&D
Disclaimer

• Employment by Janssen R&D

• Used R/Rstudio for analysis
Disclaimer

- Employment by Janssen R&D
- Used R/Rstudio for analysis
- Project was done to support a collaboration of Janssen Oncology, University of Pennsylvania and City of Hope
Disclaimer

• Employment by Janssen R&D
• Used R/Rstudio for analysis
• Project was done to support a collaboration of Janssen Oncology, University of Pennsylvania and City of Hope
• Focus on data science
Domain Knowledge

• Oncology:
 • Advanced prostate cancer
 • Mechanisms of resistance
Domain Knowledge

• Oncology:
 • Advanced prostate cancer
 • Mechanisms of resistance

• Biomarkers:
 • Circulating Tumor Cells (CTC)
 • Gene Expression Data
Domain Knowledge

- Oncology:
 - Advanced prostate cancer
 - Mechanisms of resistance
- Biomarkers:
 - Circulating Tumor Cells (CTC)
 - Gene Expression Data
Domain Knowledge

- Oncology:
 - Advanced prostate cancer
 - Mechanisms of resistance

- Biomarkers:
 - Circulating Tumor Cells (CTC)
 - Gene Expression Data
 - Genes from previous findings
The Process

1. Relevant Data Collection, Pre-processing and Cleaning
2. Exploratory Data Analysis
3. Analysis and Modeling
Data Collection, Pre-processing and Cleaning

- Import
- Tidy
- Transform
Data Collection, Pre-processing and Cleaning

- Import
- Tidy
- Transform

R Tips and tricks:

- The Tidyverse is an opinionated collection of R packages designed for data science
- A tibble is a modern take on the data.frame
Data Collection, Pre-processing and Cleaning

- Import
- Tidy
- Transform

- Bird’s Eye view of the expression data

R Tips and tricks:

- The Tidyverse is an opinionated collection of R packages designed for data science
- A tibble is a modern take on the data.frame
Exploratory Data Analysis

- Detection of mistakes
- Checking of assumptions
- Preliminary selection of appropriate models
- Determining relationships between variables
Exploratory Data Analysis

• Cell counts
Exploratory Data Analysis

• Cell counts

R Tips and tricks:
• geom_histogram
• table
Exploratory Data Analysis

• Expression Data
 • ~190 genes
 • Genes with near zero variance filtered
 • ~140 genes
Exploratory Data Analysis

• Expression Data
 • ~190 genes
 • Genes with near zero variance filtered
 • ~140 genes

R Tips and tricks:
• ggpairs
Exploratory Data Analysis

• Expression Data
 • ~190 genes
 • Genes with near zero variance filtered
 • ~140 genes

R Tips and tricks:
 • heatmap.2
Exploratory Data Analysis

• Expression Data
 • ~190 genes
 • Genes with near zero variance filtered
 • ~140 genes

R Tips and tricks:
 • heatmap.2
Exploratory Data Analysis

• Expression Data
 • ~190 genes
 • Genes with near zero variance filtered
 • ~140 genes

R Tips and tricks:
• princomp
Exploratory Data Analysis

- Expression Data
 - ~190 genes
 - Genes with near zero variance filtered
 - ~140 genes

R Tips and tricks:
- `princomp`
Exploratory Data Analysis

- Response Data

<table>
<thead>
<tr>
<th>Response</th>
<th>NR</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>19</td>
<td>24</td>
</tr>
</tbody>
</table>

R Tips and tricks:
- `table`
- `geom_violin`
Exploratory Data Analysis

• Technical Effects
 • Delay in 24 hour sample processing

• Cell Counts

R Tips and tricks:
• `geom_point`
• `geom_line`
Analysis and Modeling

• Univariate
• Multivariate/Predictive
Analysis and Modeling

• Univariate
 • Fitting GLM (binomial/logit) for each of ~140 genes
 • Response = GeneExpr + Study + CTCs# + GeneExpr * CTCs#
 • Response = GeneExpr + Study + CTCs#
 • Response = GeneExpr + CTCs#
 • Response = GeneExpr

• Multivariate/Predictive

R Tips and tricks:
• glm
Analysis and Modeling

• Univariate
 • Fitting GLM (binomial/logit) for each of ~140 genes
 • Response = GeneExpr + Study + CTCs# + GeneExpr * CTCs#
 • Response = GeneExpr + Study + CTCs#
 • Response = GeneExpr + CTCs#
 • Response = GeneExpr

• Multivariate/Predictive

R Tips and tricks:
 • glm
 • heat map. 2
Analysis and Modeling

- Univariate
- Multivariate/Predictive

R Tips and tricks:
- caret package
Analysis and Modeling

• Univariate
• Multivariate/Predictive
 • Create data partition into test and training sets

R Tips and tricks:
• caret package
Analysis and Modeling

• Univariate

• Multivariate/Predictive
 • Create data partition into test and training sets
 • Choose methods:
 • Linear Discriminant Analysis
 • Partial Least Squares
 • Support Vector Machines
 • Neural Networks
 • Recursive Partitioning
 • Random Forests
 • Elastic Net

R Tips and tricks:
• caret package
Analysis and Modeling

• Univariate

• Multivariate/Predictive
 • Create data partition into test and training sets
 • Choose methods:
 • Linear Discriminant Analysis
 • Partial Least Squares
 • Support Vector Machines
 • Neural Networks
 • Recursive Partitioning
 • Random Forests
 • Elastic Net
 • Choose tuning parameters for methods

R Tips and tricks:
• caret package
• recipes package
Analysis and Modeling

• Univariate

• Multivariate/Predictive
 • Create data partition into test and training sets
 • Choose methods:
 • Linear Discriminant Analysis
 • Partial Least Squares
 • Support Vector Machines
 • Neural Networks
 • Recursive Partitioning
 • Random Forests
 • Elastic Net
 • Choose tuning parameters for methods
 • Execute and evaluate

R Tips and tricks:
• caret package
• plotROC package
Results
Results
References