Using Count-Based Statistical Models for Key Performance Indicators, Risk Metrics, etc.

Aaron J. Mackey, PhD
Director Data Sciences
Covance Informatics

PhUSE US Connect 2019
Clinical trials are an amalgam of events, occurring in time

- Country- and site-level activation, monitoring, close
- Recruitment, Screening, Enrollment
- Subject Visits
- Adverse Event (AE) reports
- Protocol Deviations, etc.

Many KRI/KPI/QTLs are calculated as rates: counts / timespan

- == mean expected counts of a *homogenous* Poisson process
- Rates cannot be negative; thus *never* Normal-distributed
- So why are so many statistics based on Z-scores of rates?
- What better statistical distributions/models are available?

Why counts?
KRI: Adverse Event rates, under-reporting sites?
Linear vs. Logarithmic scales: watch the zeroes!
the Normal/Z-score treatment: no sites significant?
Poisson – models an expected number of counts in a fixed timespan

- Observations over different timespans accounted for using an explicit “offset” covariate with parameter set to 1.0
- Using R’s “glm” formula:

 \[
 \text{glm}(AEcounts \sim 1 + \text{offset}(\log(\text{exposure})), \\
 \text{family}="\text{poisson}"
)
 \]

Poisson model assumes that variance is equal to mean rate

- Can be relaxed using family="quasipoisson" but
the Poisson treatment: ~all sites significant!
Negative Binomial (NB) – as Poisson, models an expected number of counts in a fixed timespan, but with independent variance

- Observations over different timespans accounted for using an explicit “offset” covariate with parameter set to 1.0
- Using R’s “MASS” library and the “glm.nb” formula:
 \[\text{glm.nb}(\text{AEcounts} \sim 1 + \text{offset}(\log(\text{exposure}))) \]

NB still assumes homogenous rates over time
the NB treatment: a few sites significant
Sponsor-flagged AE under-reporting:

Normal/Z-score:

Negative Binomial:
Statistical Counting Models: Zero-inflated

► observed zeroes could be structural, not by chance
 • Zero subjects enrolled in an activated site, yet site not actively enrolling in trial
 • Zero CRA monitoring visits at an active site, because no subjects enrolled

► both Poisson and Negative Binomial models can be extended as a mixture model with a non-zero fraction of structural zeroes mixed within P/NB-distributed random observations
 • Zero-inflated Poisson, or ZIP
 • Zero-inflated NB, or ZINB
CRA visit compliance: visit counts with zeroes
CRA visit compliance: visit counts with zeroes
In Summary

► Use counts, not rates, to ask statistical questions
 • better power, treatment of uncertainty
► Poisson commonly used, but beware variance == mean assumption!
► Negative Binomial convenient, flexible solution
► Zero-inflation (and other “hurdle” models) allow for mixtures of observations from different sources
► Further resources:
 https://cran.r-project.org/web/packages/pscl/vignettes/countreg.pdf
 https://cran.r-project.org/web/packages/glmmTMB/vignettes/glmmTMB.pdf