(Sample) Size DOES Matter

John Salter, Oxford Pharmaceutical Sciences Ltd, Oxford, UK

ABSTRACT
One of the most commonly asked questions regarding the planning of a clinical trial (and one of the most difficult to answer) is how many patients need to be entered into the trial in order to show statistical – and clinical – significance.

This paper will examine some of the key considerations that need to be examined, such as design of the trial, assumptions about the data and “risk” and “error”. It will also detail how we can utilize software packages (such as SAS® and Excel®) to program some useful sample size calculations in order to derive the number of patients required for different types of trial.

INTRODUCTION
One of the most commonly asked questions regarding the planning of a clinical trial (and one of the most difficult to answer) is how many patients need to be entered into the trial in order to show statistical – and clinical – significance. Ideally, clinical trials should be large enough to detect reliably the smallest possible differences in the primary outcome with treatment that are considered clinically worthwhile.

ICH E9 (2) states that “the number of subjects in a clinical trial should always be large enough to provide a reliable answer to the questions addressed.” Other things being equal, the greater the sample size or the larger the experiment, the more precise will be the estimates of their parameters and their differences. The difficulty lies in deciding what degree of precision to aim for.

Why we need a “large enough” clinical trial is an ethical problem that is answered by considering what would happen if we recruit too few or too many patients to a trial – in the former case, there may not be enough data to show any meaningful difference and, if any difference is shown, the study will not be powerful enough to confirm this; in the latter case, even with a successful outcome, we are putting more patients at risk than is necessary, as well as the obvious cost implication to the pharmaceutical company running the trial! Thus, the sample size itself must be planned carefully to ensure that time, effort and costs are not squandered.

This paper will examine some of the key considerations that need to be examined, such as design of the trial, assumptions about the data and “risk and error”. It will look at the equations used in the two most common types of sample size calculation and how we can utilize software packages to program these useful sample size calculations in order to derive the number of patients required for different types of trial.

SAMPLE SIZE CALCULATIONS AND THE COMPONENTS THEREOF

TRIAL OBJECTIVE AND ENDPOINT(S)
Before looking at the mathematical components of a sample size calculation, we must first consider the objective of the clinical trial – are we looking at a parallel or cross-over study? Are we looking to prove that a drug is more effective that another (superiority) or that is as effective (non-inferiority)? These factors all have an impact on the sample size as they require different techniques and calculations. We need to look at the objective of the trial and “convert” this into a hypothesis, known as a null hypothesis, H_0 (and its corollary, the alternative hypothesis H_A); for example, we may want to prove that a particular drug has greater effect than an existing treatment, therefore we may set our null hypothesis $H_0 : X_1 > X_2$, whereas our alternative hypothesis would state $H_A : X_1 \leq X_2$.

Similarly, our endpoint also has an impact on the sample size; we need to consider whether or not we are looking at continuous data (e.g. diastolic blood pressure), or categorical data (e.g. incidence of disease). These, and other types of data, need to be considered when making our assessment of sample size.
We also need to consider other trial factors, such as the number of evaluable patients – we often utilize different populations in statistical analysis, and sometimes we may want to take into account study drop-outs, as well as implications of Per-Protocol analyses. Another factor could be the viability of the sample vs. the planned sample size – if we are performing a trial for a rare disease (or a particularly specific form of disease), then a standard sample size calculation may not be the best approach.

For the purposes of this paper, however, let us now review the four “statistical” factors of a sample size calculation:

1. **TYPE I ERROR (SIGNIFICANCE LEVEL)**
 The chosen level of significance sets the likelihood of detecting a treatment effect when no effect exists (leading to a so-called “false-positive” result) and defines the p-value. Results with a p-value above this threshold lead to the conclusion that an observed difference may be due to chance alone, while those with a p-value below this threshold lead to rejecting chance and concluding that the intervention has a real effect. The level of significance is most commonly set at 5% (that is, \(p = 0.05\)). This means the investigator is prepared to accept a 5% chance of erroneously reporting a significant effect.

2. **TYPE II ERROR (POWER)**
 The power of a study is its ability to detect a true difference in outcome between the control group and the “test” group. This is usually chosen to be either 80% or 90%. By definition, a study power set at 80% accepts a likelihood of one in five (that is, 20%) of missing such a real difference. Thus, the power for large trials is occasionally set at 90% to reduce to 10% the possibility of missing the difference – this is what is commonly referred to as the Type II error (\(\beta\)), or the probability of rejecting the alternative hypothesis when it is in fact true. Hence, the power of the study is usually written as \(1-\beta\).
 Consider the two sets of errors in the following table:

<table>
<thead>
<tr>
<th>TRUE DIFFERENCE</th>
<th>NO TRUE DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed Difference</td>
<td>Well Powered Trial</td>
</tr>
<tr>
<td>No Observed Difference</td>
<td>TYPE I ERROR</td>
</tr>
<tr>
<td></td>
<td>TYPE II ERROR</td>
</tr>
<tr>
<td></td>
<td>Well Designed Trial</td>
</tr>
</tbody>
</table>

3. **SIZE OF TREATMENT EFFECT (MARGIN)**
 The effect of treatment in a trial can be expressed as an absolute difference. That is, the difference between the rate of the event in the control group and the rate in the test group; or as a relative reduction, that is, the proportional change in the event rate with treatment. If the rate in the control group is 6.3% and the rate in the intervention arm is 4.2%, the absolute difference is 2.1%; the relative reduction with intervention is 2.1%/6.3%, or 33%. This is usually referred to as \(\delta\) - we need to consider a value of \(\delta\) as a clinically important effect, or the minimum value at which we can consider the difference to be clinically significant.

4. **VARIABILITY**
 Unlike the Type I and Type II errors, which are generally chosen by convention, the variability must be estimated, usually from previous studies. Previous studies often provide the best information available, but may overestimate variability (if designing a large Phase 3 study), as they can be from a different time or place, and thus subject to changing and differing background practices.
PARALLEL TRIALS

The following shows a basic parallel trial:

Here a subject is assigned to a particular treatment throughout the trial, and we make a comparison between subjects; that is, we compare the results from those subjects who received Treatment A to those who received Treatment B. The advantages of a parallel trial are that they are easy to plan and trials can be completed relatively quickly. The disadvantages are that we cannot measure within subject variability; inasmuch as, we do not know the effect of Treatment A on a subject who was assigned Treatment B, and vice versa.

We now need to examine our endpoint – are we looking to prove superiority over an existing treatment, or that our new treatment is non-inferior (or equivalent) to an existing treatment; there is also a difference class of trials called bioequivalence trials. [NB: for the purposes of space, we will only consider the equations for superiority trials here].

In a superiority trial with normal data, we can use the following equation:

\[
n = \frac{2 \left(Z_{1-\beta} + Z_{1-\alpha/2} \right)^2 \sigma^2}{d^2}
\]

where \(\sigma \) is the population variance (variability) and \(d \) is the size of treatment effect. The above formula is sufficient for 1:1 randomisation; if the allocation is unequal (e.g. 2:1) then we need to apply a factor of \((a+1)/a\) in place of the 2, where \(a \) is the allocation ratio.

We can apply a “continuity correction” to the equation to optimize for smaller sample sizes as follows:

\[
n = \frac{2 \left(Z_{1-\beta} + Z_{1-\alpha/2} \right)^2 \sigma^2}{d^2} + \frac{Z_{1-\alpha/2}^2}{4}
\]

For the purposes of most clinical trials, however, a quick approximation is as follows:

- For 1:1 randomisation, 80% Power, 5% significance: \(\frac{16\sigma^2}{d^2} \)
- For 1:1 randomisation, 90% Power, 5% significance: \(\frac{21\sigma^2}{d^2} \)
Considering binary data (e.g. proportional response), we need to consider the relative success rates within each treatment; assigning P_A as proportion of success in Treatment A and P_B as proportion of success in Treatment B, we can use the following equation:

$$n = \frac{\left(Z_{1-\alpha/2} \sqrt{2P'(1-P')} + Z_{1-\beta} \sqrt{P_1(1-P_1) + P_2(1-P_2)}\right)^2}{D^2}$$

where $P' = \frac{P_1 + P_2}{2}$ and $D = P_1 - P_2$

As with the normal method, we can apply a "continuity correction" to the equation to optimize for smaller sample sizes as follows:

$$n = \frac{\left(Z_{1-\alpha/2} \sqrt{2P'(1-P')} + Z_{1-\beta} \sqrt{P_1(1-P_1) + P_2(1-P_2)}\right)^2}{D^2} + \frac{n}{4} \left(1 + \sqrt{\frac{4}{nD}}\right)^2$$

If the proportions are within 0.3 of each other, then we can approximate the above formula as:

$$n = \frac{\left(Z_{1-\alpha/2} + Z_{1-\beta}\right)^2 (P_1(1-P_1) + P_2(1-P_2))}{D^2}$$ (1)
CROSSOVER TRIALS

The following shows a basic cross-over trial:

In a cross-over trial, a subject is assigned to both treatments and only the ordering of the treatments differs between subjects in a RCT. Here, we can make between subject comparisons as in the parallel trial, but – more importantly – as a subject has received both treatments, we can also measure within subject variability. This is the main advantage of a cross-over trial – all the information is within subject, so there is no between subject variability to “cloud” assessments; however, one notable disadvantage is that the trial is almost always longer in duration than a parallel trial. Another is that a subject needs to be present for both “periods” of treatment in order to be eligible for analysis. There are also obvious ethical considerations to take into account.

As with the parallel trial endpoints we need to consider whether or nor we are interested in proving superiority or non-inferiority (and, as before, the equations below will concentrate on the superiority methodology).

As mentioned before, the main point of interest in a cross-over trial is the within-subject variability. Accordingly, the sample size equation is similar, but using the within-subject variability instead:

\[n = \frac{2(Z_{1-\beta} + Z_{1-\alpha/2})^2 \sigma_w^2}{d^2} \]

where \(\sigma_w \) is the within-subject population variance (variability) and \(d \) is the size of treatment effect.

As before, we can apply a “continuity correction” to the equation to optimize for smaller sample sizes as follows:

\[n = \frac{2(Z_{1-\beta} + Z_{1-\alpha/2})^2 \sigma_w^2}{d^2} + \frac{Z_{1-\alpha/2}^2}{2} \]

And, also as before, we can use a quick approximation as follows:

- For 80% Power, 5% significance: \(\frac{16\sigma_w^2}{d^2} \)
- For 90% Power, 5% significance: \(\frac{21\sigma_w^2}{d^2} \)
For binary / proportional data, however, we need to take a different approach than for parallel trials. Consider the following summary of response:

<table>
<thead>
<tr>
<th></th>
<th>TREATMENT B</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Response</td>
<td>No Response</td>
<td>Proportion of Response</td>
<td></td>
</tr>
<tr>
<td>TREATMENT A</td>
<td>N_{RR}</td>
<td>N_{RN}</td>
<td>P_A</td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>N_{NR}</td>
<td>N_{NN}</td>
<td>1 - P_A</td>
<td></td>
</tr>
<tr>
<td>No Response</td>
<td>P_B</td>
<td>1 - P_B</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

We need to consider the odds ratio (i.e. the probability of Treatment B responding and Treatment A not responding, divided by the probability of Treatment A responding and Treatment B not responding).

\[OR = \frac{N_{RN}}{N_{NR}} \]

A discordant sample size can then be derived as follows:

\[n = \frac{\left(Z_{1-\alpha/2}(OR + 1) + 2(Z_{1-\beta}\sqrt{OR})^2 \right)}{(OR - 1)^2} \]

To get a total sample size, divide this by the probability of being discordant:

\[n = \frac{\left(Z_{1-\alpha/2}(OR + 1) + 2(Z_{1-\beta}\sqrt{OR})^2 \right)}{OR} \]

\[n = \frac{N_{RN} + N_{NR}}{N_{RN} + N_{NR}} \] \hspace{1cm} (1)

A simpler approach is just to use the marginal probabilities P_A and P_B as detailed in the table above, and use these in the parallel group methodology, using the sample size per group as the total sample size.
PROGRAMMING
SAS Code can be used to derive sample sizes based on the above formula relatively easily; the PROBIT function can be utilized to provide the Z-statistics and values can be entered by hand or programmatically.

For example, for superiority trials, the following basic macro can provide sample sizes for normal and binary data in a parallel study:

```sas
/* *************************************************************************/
** Macro name: SS_S_P.sas                                              **
**                                                                      **
** Variables : &DATAIN  - NORMal or BINary input                        **
**             &SIG     - Significance level (default=5)                **
**             &POWER   - Power (default=80)                            **
**             &DIFF    - Expected difference (for NORM input)          **
**             &SIGMA   - Expected variance (for NORM input)            **
**             &PA      - Prob. of success in A (for BIN input)         **
**             &PB      - Prob. of success in B (for BIN input)         **
**                                                                      **
** Function  : Provides sample size calculations for parallel           **
**             superiority trials                                       **
**                                                                      **
** Outputs   : &SS_GP   - Group sample size                             **
**************************************************************************

%macro ss_s_p (datain=,
               sig=,
               power=,
               diff=,
               sigma=,
               pa=,
               pb=);
  options nomprint nosymbolgen nomlogic;
  /***************************************************************************/

  %if (%length(&datain)=0) %then %let datain=NORM;
  %if (%length(&sig)=0)    %then %let sig=5;
  %if (%length(&power)=0)  %then %let power=80;

  if &DATAIN=NORM %then %do;
    %let PA=;
    %let PB=;
  %end;
  if &DATAIN=BIN %then %do;
    %let DIFF=;
    %let SIGMA=;
  %end;

  %if &ABORT>0 %then %put %str(ERROR: Not enough parameters specified);
```
%if &ABORT=0 %then %do;
/*****************************/
* NORMAL calculation *
/*****************************/
%if &DATAIN=NORM %then %do;

data sample;
 zstat= abs(probit(&sig/200));
 zpower= abs(probit((100-&power)/200));
 tot= 2*((zstat+zpower)**2);
 N= ceil((tot*(&sigma**2))/&diff**2);
 NC= ceil(N + (((zstat)**2)/4));
call symput('nval',put(N,best.));
call symput('ncval',put(NC,best.));
run;

%put %STR(--);
%put %STR(Power: &POWER);
%put %STR(Significance Level: &SIG);
%put %STR(Expected Difference: &DIFF);
%put %STR(Expected s²: &SIGMA);
%put;
%put %STR(--);
%put %STR(Sample Size Per Group: &NVAL);
%put;
%put %STR(~ with continuity correction: &NCVAL);
%put %STR(--);

%end;

/*****************************/
* BINary calculation *
/*****************************/
%if &DATAIN=BIN %then %do;

data sample;
 zstat= abs(probit(&sig/200));
 zpower= abs(probit((100-&power)/200));
 tot1= (zstat+zpower)**2;
 tot2= (&pa*(1-&pa)) + (&pb*(1-&pb));
 N= ceil((tot1*tot2)/(&pa-&pb)**2);
 NC= ceil((N/4)*((1+(sqrt(1+(4/(N*abs(&pa-&pb))))))**2));
call symput('nval',put(N,best.));
call symput('ncval',put(NC,best.));
run;

%put %STR(--);
%put %STR(Power: &POWER);
%put %STR(Significance Level: &SIG);
%put %STR(Success on Trt A: &PA);
%put %STR(Success on Trt B: &PB);
%put;
%put %STR(--);
%put %STR(Sample Size Per Group: &NVAL);
%put;
%put %STR(~ with continuity correction: &NCVAL);
%put %STR(--);

%end;
%end;
%mend;
There is also a web-based interface for power and sample-size analyses available in SAS v9.1 onwards, accessible via a Web browser (SAS/STAT Power and Sample Size [PSS]).

We can also use Excel to derive sample sizes – using the same functionality but in a spreadsheet, this is probably more aesthetic than the use of a SAS macro, especially for the general population who have an aversion to code!

Example of a spreadsheet output is as follows:

Here using ActiveX controls and Visual Basic, we can set data types and limits for power and significance to provide a sample size.

OTHER CONSIDERATIONS

There are many other types of trials that need to be considered, such as non-inferiority trials and bioequivalence trials; we can also base sample size equations on survival data.

We also need to consider that for Phase I trials, quite often there is not enough prior information to provide for these formula-driven methods. In these cases, a somewhat more pragmatic approach needs to be made towards sample size – for instance, the FDA guideline (6) states that “a pilot study that documents BE [bioequivalence] can be appropriate, provided its design and execution are suitable and that a sufficient number of subjects (e.g., 12) have completed the study.”

Another point to consider is the use of interim analyses – it may be ethically necessary (especially with early phase trials) for a review of data during the trial to ensure that subject safety is not compromised. To this end, various stopping rules can be put in place to ensure that (a) the final outcome of the trial is powered effectively and (b) the ethical constraints are in no way compromised. These methods of “alpha spending” are varied, but some of the more common methods are detailed in the References (3,4,5).

Another available technique is “bootstrapping” – a simulation method; this is relatively user-intensive but it has the potential to provide a better sample size estimation than the techniques detailed above (7).
CONCLUSION
In general, this paper has concentrated on but a small section of sample size derivation. The examples given merely scratch the surface of the available methods of determining a sample size. What we need to focus on is that the study design is the key to an appropriate and robust sample size; this in turn is driven by the trial objectives and endpoints. By ensuring that reasonable assumptions are made, we can meet ethical and regulatory conformance as well as providing a firm sample size.

REFERENCES
1. S. A. Julious (2005); Estimating Sample Sizes in Clinical Research
4. S. J. Pocock (1998); Clinical Trials – A Practical Approach
5. S. Senn (1993); Cross-over Trials in Clinical Research
7. Efron and Tibshirani (1993); An Introduction to the Bootstrap

ACKNOWLEDGMENTS
Sincerest thanks to Dr Stephen A Julious for allowing me to source some examples from his presentation on “Estimating Sample Sizes in Clinical Trials”. Also, thanks to Katherine Hutchinson of Oxford Pharmaceutical Sciences Ltd. for her guidance and patience.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

John Salter
Oxford Pharmaceutical Sciences Ltd.
Lancaster House
Kingston Business Park
Kingston Bagpuize
OXFORDSHIRE
OX13 5FE
Work Phone: 01865 823823
Email: john.salter@ops-web.com
Web: www.ops-web.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.