Compute; Your Future with Proc Report

Ian J Dixon, GlaxoSmithKline, Harlow, UK
Suzanne E Johnes, GlaxoSmithKline, Harlow, UK

ABSTRACT

PROC REPORT is widely used within the pharmaceutical industry to summarise and list clinical trial data. This paper will focus on the COMPUTE statement available within this SAS® procedure and will highlight the wide-ranging use of this facility.

INTRODUCTION

This paper will explore six examples that demonstrate the COMPUTE statement within PROC REPORT and illustrate its usage in a Pharmaceutical context.

EXAMPLES

1. Computing columns based on statistics
2. Creating flagging variables according to abnormal results
3. Producing a customised summary on each page
4. Varying footnotes by page
5. Creating page numbers
6. Displaying a graph and report on a single page

PROC REPORT SYNTAX

PROC REPORT <DATA= > <OUT= > WINDOWS | NOWINDOWS;
 COLUMN column-specifications;
 DEFINE variable /<usage> <attributes> <options> <justification>
 <"column-header">;
 BREAK location break-variable < / break-options >;
 RBREAK location < / break-options >;
 COMPUTE location < break-variable >;
 LINE specifications;
 ENDCOMP;
 COMPUTE report-item < / type-specification >;
 CALL DEFINE (column-id, "attribute-name", value);
 ENDCOMP;
 BY < descending > variable;
RUN;
1. COMPUTING COLUMNS BASED ON STATISTICS

It is often necessary for body mass index (BMI) to be included in Demography listings. Body Mass Index is calculated as weight (kg) divided by height squared (m²). The COMPUTE statement can be used to derive this variable and then display it in the final listing.

```
proc report data=demo spacing=2 split="*" nowd headskip headline ps=43 ls=108;
column subject treat age sex ethnic height weight bmi;
define subject / left group order "Subject";
define treat / left group order "Treatment*Sequence";
define age / left order "Age*(yrs)";
define sex / left order "Sex";
define ethnic / left order "Ethnicity";
define height / left display "Height*(m)";
define weight / left display "Weight*(kg)";
define bmi / left computed format=6.2 "BMI*(kg/m^2)";
compute bmi;
bmi = weight / (height*height);
endcomp;
run;
quit;
```

Output: Listing of Demographic Characteristics

<table>
<thead>
<tr>
<th>Subject</th>
<th>Treatment</th>
<th>Age (yrs)</th>
<th>Sex</th>
<th>Ethnicity</th>
<th>Height (m)</th>
<th>Weight (kg)</th>
<th>BMI (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A/B</td>
<td>31</td>
<td>F</td>
<td>Hispanic or Latino</td>
<td>1.58</td>
<td>62.5</td>
<td>25.04</td>
</tr>
<tr>
<td>2</td>
<td>B/A</td>
<td>23</td>
<td>F</td>
<td>Not Hispanic or Latino</td>
<td>1.64</td>
<td>60.0</td>
<td>22.31</td>
</tr>
<tr>
<td>3</td>
<td>A/B</td>
<td>25</td>
<td>M</td>
<td>Not Hispanic or Latino</td>
<td>1.80</td>
<td>72.5</td>
<td>22.38</td>
</tr>
<tr>
<td>4</td>
<td>A/B</td>
<td>25</td>
<td>M</td>
<td>Not Hispanic or Latino</td>
<td>1.80</td>
<td>67.8</td>
<td>20.93</td>
</tr>
<tr>
<td>5</td>
<td>B/A</td>
<td>20</td>
<td>F</td>
<td>Not Hispanic or Latino</td>
<td>1.75</td>
<td>86.0</td>
<td>28.08</td>
</tr>
<tr>
<td>6</td>
<td>B/A</td>
<td>20</td>
<td>M</td>
<td>Not Hispanic or Latino</td>
<td>1.91</td>
<td>79.3</td>
<td>21.74</td>
</tr>
<tr>
<td>7</td>
<td>B/A</td>
<td>20</td>
<td>F</td>
<td>Not Hispanic or Latino</td>
<td>1.72</td>
<td>69.5</td>
<td>23.49</td>
</tr>
<tr>
<td>8</td>
<td>A/B</td>
<td>22</td>
<td>F</td>
<td>Not Hispanic or Latino</td>
<td>1.65</td>
<td>54.0</td>
<td>19.83</td>
</tr>
<tr>
<td>9</td>
<td>B/A</td>
<td>32</td>
<td>M</td>
<td>Not Hispanic or Latino</td>
<td>1.82</td>
<td>86.5</td>
<td>26.11</td>
</tr>
<tr>
<td>10</td>
<td>A/B</td>
<td>20</td>
<td>F</td>
<td>Not Hispanic or Latino</td>
<td>1.58</td>
<td>64.0</td>
<td>25.64</td>
</tr>
</tbody>
</table>

2. CREATING FLAGGING VARIABLES ACCORDING TO ABNORMAL RESULTS

The COMPUTE statement can be used in PROC REPORT to attach flags to abnormal values. These types of output are commonly produced for listing ECG, Vital signs and Lab results. The SAS code below attaches High/Low flags to heart rate values outside the pre-defined potential clinical concern (PCC) range.

```
compute bmi;
    bmi = weight / (height*height);
endcomp;
```

A COMPUTE AFTER statement is used to add a footnote to the table to define the flags.
PhUSE 2007

proc report data=vitals spacing=2 split="*" nowd headskip headline ps=43 ls=108;
column subject treat vsactdy vsdt vsacttm visitnum visit heartccd heart heartpci;
define subject / left group order "Subject";
define treat / left group order "Treatment*Sequence" flow;
define vsactdy / left order width=5 "Study*Day";
define vsdt / left order "Date";
define vsacttm / left order "Time";
define visitnum / order noprint;
define visit / left width=17 "Visit" flow;
define heartccd / display noprint;
define heart / display noprint;
define heartpci / left computed width=8 "Heart Rate (bpm)";
break after subject /skip;
compute heartpci / character length=20;
 if heartccd in ("H" "L") then heartpci=trim(left(heart)) || " "
 || trim(left(heartccd));
else heartpci=trim(left(heart));
endcomp;
compute after _page_ / left;
text1="H=High, L=Low"
line text1 $108.0;
endcomp;
run;
quit;

Output: Listing of Heart Rate values for subjects with Abnormalities of Potential Clinical Concern

<table>
<thead>
<tr>
<th>Subject</th>
<th>Treatment</th>
<th>Study Sequence</th>
<th>Day</th>
<th>Date</th>
<th>Time</th>
<th>Visit</th>
<th>Heart Rate (bpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A/B</td>
<td>-14</td>
<td>05JUL 2006</td>
<td>10:06</td>
<td>SCREENING</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>20JUL 2006</td>
<td>10:11</td>
<td>PERIOD 1 DAY 1</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>21JUL 2006</td>
<td>10:09</td>
<td>PERIOD 1 DAY 2</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>29JUL 2006</td>
<td>10:25</td>
<td>PERIOD 2 DAY 1</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>30JUL 2006</td>
<td>10:02</td>
<td>PERIOD 2 DAY 2</td>
<td>39 L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>12AUG 2006</td>
<td>11:15</td>
<td>FOLLOW-UP</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B/A</td>
<td>-14</td>
<td>08JUL 2006</td>
<td>13:52</td>
<td>SCREENING</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>23JUL 2006</td>
<td>13:36</td>
<td>PERIOD 1 DAY 1</td>
<td>110 H</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>24JUL 2006</td>
<td>14:02</td>
<td>PERIOD 1 DAY 2</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>01AUG 2006</td>
<td>13:12</td>
<td>PERIOD 2 DAY 1</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>02AUG 2006</td>
<td>12:57</td>
<td>PERIOD 2 DAY 2</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>11AUG 2006</td>
<td>12:59</td>
<td>FOLLOW-UP</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A/B</td>
<td>-14</td>
<td>12JUL 2006</td>
<td>08:06</td>
<td>SCREENING</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>27JUL 2006</td>
<td>08:36</td>
<td>PERIOD 1 DAY 1</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>28JUL 2006</td>
<td>08:51</td>
<td>PERIOD 1 DAY 2</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>05AUG 2006</td>
<td>08:20</td>
<td>PERIOD 2 DAY 1</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>06AUG 2006</td>
<td>08:14</td>
<td>PERIOD 2 DAY 2</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>16AUG 2006</td>
<td>09:04</td>
<td>FOLLOW-UP</td>
<td>39 L</td>
<td></td>
</tr>
</tbody>
</table>

H=High, L=Low
3. Producing a Customised Summary on Each Page

It is often useful to be able to add subheadings at the beginning of each page of the report to summarise by a particular variable within your data. For example, the COMPUTE block in PROC REPORT can be used to summarise data by cohort. The study used in this example has two cohorts.

```sas
options nobyline;
proc sort data=pkcnr;
    by cohort;
run;
proc report data=pkcnr spacing=2 split="*" nowd headskip headline ps=43 ls=108;
    by cohort;
    column cohort visit bign time n impute mean std median min max;
    define cohort / order=internal id spacing=2 width=1 format=$108.0 noprint;
    define visit / left group "Visit";
    define bign / left group width=4 format=2. "N";
    define time / left group "Planned*Relative*Time";
    define n / left "n";
    define impute / left "Number*Imputed";
    define mean / left "Mean";
    define std / left "SD";
    define median / left "Median";
    define min / left "Min.";
    define max / left "Max.";
compute before _page_ / left;
    line "Cohort = " cohort $108.0;
endcomp;
compute after _page_ / left;
    text = "&sysuserid: &ProjectPath\Program\Analysis\&_program..sas
%sysfunc(datetime(),datetime."");
    line @1 text $108.0;
endcomp;
run;
quit;
```
PhUSE 2007

Output: Summary of Plasma ABC123456 Pharmacokinetic Concentration-Time Data (ng/mL)

Cohort = Cohort 1

<table>
<thead>
<tr>
<th>Visit</th>
<th>N</th>
<th>Time</th>
<th>Relative</th>
<th>Number</th>
<th>Planned</th>
<th>n</th>
<th>Imputed</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY 1</td>
<td>14</td>
<td>PRE-Dose 1</td>
<td>14</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 H</td>
<td>14</td>
<td>0</td>
<td>5.858</td>
<td>2.0927</td>
<td>5.895</td>
<td>2.81</td>
<td>10.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 H</td>
<td>14</td>
<td>0</td>
<td>8.673</td>
<td>2.9289</td>
<td>8.550</td>
<td>4.53</td>
<td>13.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 H</td>
<td>14</td>
<td>0</td>
<td>10.575</td>
<td>2.8155</td>
<td>10.365</td>
<td>6.66</td>
<td>17.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 H</td>
<td>14</td>
<td>0</td>
<td>9.965</td>
<td>2.4304</td>
<td>9.420</td>
<td>7.06</td>
<td>15.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 H</td>
<td>14</td>
<td>0</td>
<td>8.224</td>
<td>2.0953</td>
<td>8.125</td>
<td>4.84</td>
<td>11.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 H</td>
<td>14</td>
<td>0</td>
<td>6.927</td>
<td>1.8188</td>
<td>7.300</td>
<td>3.60</td>
<td>9.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 H</td>
<td>14</td>
<td>0</td>
<td>5.051</td>
<td>1.5072</td>
<td>4.815</td>
<td>2.25</td>
<td>7.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DAY 10	14	PRE-Dose 1	14	0							
1 H	14	0	11.982	2.7146	11.440	7.08	17.26				
2 H	14	0	14.702	3.3639	14.415	10.29	23.30				
4 H	14	0	16.899	4.2662	16.315	12.18	28.71				
6 H	14	0	15.861	4.4229	15.295	9.11	26.90				
8 H	14	0	13.844	3.8512	12.805	6.79	22.38				
12 H	14	0	11.514	3.6062	11.125	4.90	18.12				
24 H	14	0	10.352	3.3572	10.065	4.00	16.49				

Cohort = Cohort 2

<table>
<thead>
<tr>
<th>Visit</th>
<th>N</th>
<th>Time</th>
<th>Relative</th>
<th>Number</th>
<th>Planned</th>
<th>n</th>
<th>Imputed</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY 1</td>
<td>14</td>
<td>PRE-Dose 1</td>
<td>14</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 H</td>
<td>14</td>
<td>2</td>
<td>1.729</td>
<td>0.7604</td>
<td>1.985</td>
<td>0.00</td>
<td>2.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 H</td>
<td>14</td>
<td>0</td>
<td>2.932</td>
<td>0.6217</td>
<td>2.755</td>
<td>2.18</td>
<td>4.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 H</td>
<td>14</td>
<td>0</td>
<td>3.290</td>
<td>0.5748</td>
<td>3.330</td>
<td>2.40</td>
<td>4.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 H</td>
<td>14</td>
<td>0</td>
<td>2.877</td>
<td>0.5284</td>
<td>2.790</td>
<td>2.25</td>
<td>4.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 H</td>
<td>14</td>
<td>1</td>
<td>2.358</td>
<td>0.9523</td>
<td>2.445</td>
<td>0.00</td>
<td>4.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 H</td>
<td>14</td>
<td>3</td>
<td>1.615</td>
<td>1.0466</td>
<td>1.760</td>
<td>0.00</td>
<td>3.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 H</td>
<td>14</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

DAY 10	14	PRE-Dose 1	14	3							
1 H	14	1	2.788	1.2681	2.855	0.00	5.11				
2 H	14	0	3.925	0.9337	3.785	2.58	6.11				
4 H	14	0	4.296	0.9897	4.310	2.84	6.01				
6 H	14	0	4.081	1.1970	3.810	2.55	6.76				
8 H	14	0	3.649	1.1661	3.300	2.29	5.93				
12 H	14	1	2.882	1.5172	2.765	0.00	6.26				
24 H	14	4	1.743	1.3055	1.890	0.00	3.79				
4. VARYING FOOTNOTES BY PAGE

For tables that span multiple pages, a common practice is to put a standard message such as “See last page for footnotes” at the bottom of each page except the last, and a complete listing of all footnotes at the bottom of the table on the final page. This can help to conserve page space if there are numerous footnotes. The code below shows the use of the COMPUTE and LINE statement to add footnotes in this way.

The significant lines in the code are the “after” and “after _page_” options in the COMPUTE statement. The “after” option executes at the end of the table; the “after _page_” executes at the end of each page of the table.

```
proc report data=pkcnc spacing=2 split=* nowd headskip headline ps=43 ls=108;
  column cohort bign visit time n impute mean std median min max;
  define cohort / left group "Cohort";
  define bign / left group width=4 format=2. "N";
  define visit / left group "Visit";
  define time / left group "Planned*Relative*Time";
  define n / left "n";
  define impute / left "Number*Imputed";
  define mean / left "Mean";
  define std / left "SD";
  define median / left "Median";
  define min / left "Min.";
  define max / left "Max."
  break after visit;
  compute after;
    hold = “x”;
  endcomp;
  compute after _page_ / left;
    length text1 text2 text3 text4 $ 108;
    if hold=“x” then do;
      text1="Cohort 1: Day 1(Drug A Alone), Day 10(Drug A + Drug B 10mg).”;
      text2="Cohort 2: Day 1(Drug A Alone), Day 10(Drug A + Drug B 30mg).”;
      text3="If more than 30% of values are imputed, the standard deviation will not be displayed.”;
      text4="If the mean or median value is below the LLQ, it will be set to 'NQ'.”;
    end;
    else text1="See last page for footnotes.”;
  line text1 $f108.;
  line text2 $f108.;
  line text3 $f108.;
  line text4 $f108.;
  endcomp;
run;
quit;
```
Output: Summary of Plasma ABC123456 Pharmacokinetic Concentration-Time Data (ng/mL)

<table>
<thead>
<tr>
<th>Cohort</th>
<th>N</th>
<th>Visit</th>
<th>Time</th>
<th>Relative</th>
<th>Number</th>
<th>Imputed</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td>DAY 1</td>
<td>PRE-DOSE 1</td>
<td>14</td>
<td>1</td>
<td>3.519</td>
<td>1.3696</td>
<td>3.640</td>
<td>0.00</td>
<td>5.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 H</td>
<td>14</td>
<td>0</td>
<td>5.858</td>
<td>2.0927</td>
<td>5.895</td>
<td>2.81</td>
<td>10.01</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td></td>
<td>1</td>
<td>2 H</td>
<td>14</td>
<td>0</td>
<td>8.673</td>
<td>2.9289</td>
<td>8.550</td>
<td>4.53</td>
<td>13.74</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td></td>
<td>1</td>
<td>4 H</td>
<td>14</td>
<td>0</td>
<td>10.575</td>
<td>2.8155</td>
<td>10.365</td>
<td>6.66</td>
<td>17.15</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td></td>
<td>1</td>
<td>6 H</td>
<td>14</td>
<td>0</td>
<td>9.965</td>
<td>2.4304</td>
<td>9.420</td>
<td>7.06</td>
<td>15.25</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td></td>
<td>1</td>
<td>8 H</td>
<td>14</td>
<td>0</td>
<td>8.224</td>
<td>2.0953</td>
<td>8.125</td>
<td>4.84</td>
<td>11.53</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td></td>
<td>1</td>
<td>12 H</td>
<td>14</td>
<td>0</td>
<td>6.927</td>
<td>1.8188</td>
<td>7.300</td>
<td>3.60</td>
<td>9.47</td>
</tr>
<tr>
<td>24</td>
<td>14</td>
<td></td>
<td>1</td>
<td>24 H</td>
<td>14</td>
<td>0</td>
<td>5.051</td>
<td>1.5072</td>
<td>4.815</td>
<td>2.25</td>
<td>7.06</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>DAY 10</td>
<td>PRE-DOSE 1</td>
<td>14</td>
<td>0</td>
<td>9.641</td>
<td>3.0412</td>
<td>9.450</td>
<td>4.06</td>
<td>15.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 H</td>
<td>14</td>
<td>0</td>
<td>11.982</td>
<td>2.7164</td>
<td>11.440</td>
<td>7.08</td>
<td>17.26</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td></td>
<td>1</td>
<td>2 H</td>
<td>14</td>
<td>0</td>
<td>14.702</td>
<td>3.3639</td>
<td>14.415</td>
<td>10.29</td>
<td>23.30</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td></td>
<td>1</td>
<td>4 H</td>
<td>14</td>
<td>0</td>
<td>16.899</td>
<td>4.2662</td>
<td>16.315</td>
<td>12.18</td>
<td>28.71</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td></td>
<td>1</td>
<td>6 H</td>
<td>14</td>
<td>0</td>
<td>15.861</td>
<td>4.4229</td>
<td>15.295</td>
<td>9.11</td>
<td>26.90</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td></td>
<td>1</td>
<td>8 H</td>
<td>14</td>
<td>0</td>
<td>13.844</td>
<td>3.8512</td>
<td>12.805</td>
<td>6.79</td>
<td>22.38</td>
</tr>
<tr>
<td>24</td>
<td>14</td>
<td></td>
<td>1</td>
<td>24 H</td>
<td>14</td>
<td>0</td>
<td>10.352</td>
<td>3.3572</td>
<td>10.065</td>
<td>4.00</td>
<td>16.49</td>
</tr>
</tbody>
</table>

See last page for footnotes.
CREATING PAGE NUMBERS

PROC REPORT has no direct options for printing the page number on a report. This example shows one method for addressing this problem using a single macro (called %pagenum) which can be used to write out “Page x of y” using the COMPUTE statement. The example uses an adverse events dataset to create a listing of adverse events with page numbers in the top right hand corner of each page.

options nodate;
%macro pagenum(
 code = /* Proc report code, quoted by %nrstr */
 outfile = outfile /* Output file */);

 %global page pages label;
 /* First section */
 %let page = 0;
 %let label = 10;
 /* 1a */
 filename _outfile "outfile";
 proc printto print = _outfile;
 run;
 %unquote(&code.)
 proc printto;
 run;
 filename _outfile clear;
 /* 1b */
 /* Second section */
 %let totpages = &page.;
 %let page = 0;
 %let label = %eval(%length(&totpages.)* 2 + 4); /* 1c */
 %unquote(&code.) /* 1d */
%mend pagenum;

/* Create an AE listing */
%pagenum(code=%nrstr(
proc report data=ae spacing=2 split="*" nowd headskip headline ps=43 ls=108;
column subject treat aep aeterm aestdm aeendm aesev aeser;
define subject / left group order "Subject";
define treat / left group order "Treatment";
define aep / left "Preferred*Term";
define aeterm / left "Verbatim*Text";
define aestdm / left "Start*date/time";
define aeendm / left "End*date/time";
define aesev / left "Severity";
define aeser / left "Serious*Y/N";
compute before _page_ / right;
 call execute("%let page = %eval(&page. + 1);"); /* le */
 length _XofY $&label.;
 _XofY = symget("page") || " of " || symget("totpages"); /* if */
 line "Page " _XofY $char.; /* lg */
endcomp;

run;
quit;
));
PhUSE 2007

First section: The macro variable &page stores the current page number. The first section of the macro establishes the number of pages in the final output. The total number of pages is the same as the value of &page at the end of the first run. This is then stored in the macro variable &totpages. The results from this section are deleted (see 1b in the code above). The length of the “X of Y” string part of the page number text is assigned to the macro variable &label. The initial value of &label is arbitrary (1a). It is adjusted once the total number of pages is known (1c).

Second section: The macro variable &page is reset to zero at the beginning of each run through of this section. The true length for the page number label (“X of Y” part only) is calculated (1c), and then the PROC REPORT is run, generating the output (1d). The COMPUTE statement in the PROC REPORT increments &page (1e), creates a temporary variable called _XofY (1f) and finally outputs the page number text in the top right hand corner (1g).

Output: Listing of Adverse Events (first page)

<table>
<thead>
<tr>
<th>Serious Subject</th>
<th>Preferred Verbatim Start date/time</th>
<th>End date/time</th>
<th>Severity</th>
<th>Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>Placebo</td>
<td>Headache</td>
<td>09JUN2007: 16:15</td>
<td>10JUN2007: 10:13</td>
</tr>
</tbody>
</table>

6. DISPLAYING A GRAPH AND REPORT ON A SINGLE PAGE

It is often useful to be able to produce a plot and summary of data on the same page of output. The following code provides an example of weight plotted against height with a listing showing subject, height and weight displayed beneath it. The output is saved to an HTM file named report.htm using the SAS Output Delivery System (ODS).

```sas
/* goptions device=gif xpixels=480 ypixels=360 gsfmode=replace; */
symbol1 v=star c=blue;
axis1 label=(c=lib "Height (m)") order=(1.4 to 2.0 by 0.2);
axis2 label=(c=lib "Weight (kg)") order=(40 to 110 by 10);
proc gplot data=demo gout=work.chart;
  plot height*weight / name="chart" vaxis=axis1 haxis=axis2;
run;
quit;
ods html body="c:\report.htm" gpath="c:\" (URL=NONE) style=sasweb;
proc report data=demo nowd split="*";
columns subject height weight;
define subject / left display "Subject";
define height / left display "Height (m)";
define weight / left display "Weight (kg)";
compute before _page_ / center;
call define(_ROW_, "GRSEG", "work.chart.chart");
endcode;
run;
quit;
ods html close;
```
Output: Plot and listing for the first 10 subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Height (m)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.63</td>
<td>56.3</td>
</tr>
<tr>
<td>2</td>
<td>1.67</td>
<td>75.3</td>
</tr>
<tr>
<td>3</td>
<td>1.64</td>
<td>58.3</td>
</tr>
<tr>
<td>4</td>
<td>1.67</td>
<td>57.5</td>
</tr>
<tr>
<td>5</td>
<td>1.84</td>
<td>73.2</td>
</tr>
<tr>
<td>6</td>
<td>1.87</td>
<td>73.3</td>
</tr>
<tr>
<td>7</td>
<td>1.84</td>
<td>66.6</td>
</tr>
<tr>
<td>8</td>
<td>1.9</td>
<td>88</td>
</tr>
<tr>
<td>9</td>
<td>1.71</td>
<td>72</td>
</tr>
<tr>
<td>10</td>
<td>1.82</td>
<td>81.8</td>
</tr>
</tbody>
</table>
CONCLUSION

This paper has illustrated a number of capabilities of the COMPUTE statement for presenting clinical trial results in the pharmaceutical industry. However, as with most SAS procedures there are alternative, but often less efficient, methods for achieving similar output.

REFERENCES

SAS OnlineDoc®, Version 8.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Ian J Dixon & Suzanne E Johnes
GlaxoSmithKline
NFSP(South)
Third Avenue
Harlow, CM19 5AW
UK
Ian.j.dixon@gsk.com or suzanne.e.johnes@gsk.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.