Seven Ways to CYA with JMP

reloaded

D. J. Garbutt1

1BIOP AG
Basel, Switzerland

PhUSE, 2011 Brighton
JMP is a very capable tool for statistical analysis and data exploration. In this presentation I claim it also makes an indispensable tool for the statistical programmer. To support this I present (roughly) seven scenarios where JMP can help with programming and debugging typical reporting programs and do a distinctly better job than common alternatives.
Outline

1. CYA and JMP
 - Clinical programming vs. real programming
 - JMP - history, features

2. SAS vs JMP in operation

3. Scenarios where JMP can help
 - Check consistency and feasibility
 - Check data structure
 - Errors created by programs
Some words for the acronym

If you have an interesting discovery with your data then it is most likely a data error, a measurement miscalibration or an experimental artefact. Dave, go back and check your data.

Cover Youthful Arrogance

Cover Yourself against future Aggravation

Polonius! Cover Your Arras (Hamlet)
Clinical Programming

The Basic Problem is time vs. completeness

- and that completeness means much programming around edge case in the data
- it follows that knowing your data well can substitute for complex overly general programming
- YAGNI \(^1\)
- build (only) what you need
- learn specifics, standardise and reduce workload,
- never tackle general things and exploit the specifics in your data

\(^1\) a slogan from XP that stands for You Ain’t Gonna Need It
Clinical programming vs. real programming

Strategies

All these strategies have problems

Example

exploiting each issue’s specificities
become fragile to changes or extensions in data or protocol
– costly reprogramming
code can be long and hard to read
– especially if you do not know all the details of the data
high specificity prevents re-use
– even by the author
the programming culture becomes blind to the similarities between projects and does see developing general tools as worthwhile
Clinical programming vs. real programming

Strategies

All these strategies have problems

Example

too strong focus on commonalities
devalues rare but essential needs as too complicated
comes to regard extensions as ‘scope creep’ and to be avoided
leading to cross-over studies will not be done because we can’t report them
paralysis by analysis leading to late delivery of code
History of JMP, its place now

designed as interactive program for data analysis in the 80’s

Interactive live graphics, brushing, sub-setting, labeling with colour, size, shape

Interactive reshaping: joining, transposing, splitting, stacking and filtering of data

Now grown up and can read SAS datasets, send code to SAS and run stored processes
A question of style

- pseudo-interactive vs interactive
- thinking – pause – doing – thinking
- similar yes, but the cycle time makes it a different world
Assessing our tools

Good tool effect the time / effort we are willing to expend on a task is remarkably constant with good tools therefore we can get more done.

What does good mean?

operate at a higher level of abstraction
unitary pieces that can be fitted together in unexpected ways
can build diagnostics that show so unconsidered errors can still be found
clear feedback for comprehension (graphics not tables)
exactly what you need already built in already
lithe and lean only features you need
Freq-all in JMP

In SAS
1. Get idea
2. Google
3. Find macro from Ron Fehd
4. Download
5. Paste into SAS window run on my data
6. Print/ browse output

Total Time: 1hr

With JMP
1. Get idea
2. ctrl-A - select all variables
3. Analyze | distributions
4. see problems and find which cases immediately

Total Time: 2 mins.

58 extra minutes for data exploration → output window with histograms etc., which can still be explored
lab data

Example

lab data
how to restructure it
how to view it
Way out values

- add boxplots to distributions and QQ plots
- plot boxplots per centre, group per variable
- select any individual points - locate them in data sets
- make a plot matrix for a better MV look at the data
Getting lists of discrete values

- get the lists
- Check vs data definitions
Heat map for values

- Use with values that can be sorted
 e.g. by obs
- Not suitable if looking for outliers - the colour scale is adjusted to prevent it being dominated by them
Page Incidence plot per variable

- useful if you have page source variables so you can monitor CRF entry
- use the long thin DS and count data points per page
Percent missingness, patterns of missing values

- For checking page delivery and
- data structures of analysis datasets vs originals
Analyse Counts per patient, or patient visit

- similar use to %missing
- check also for extra visits, duplicated data (= incorrect pno or visit number)
Check data structure

Dataset meta data

- count labels per dataset
- compare lengths, formats attached, etc
- find variables in each dataset
 - using row marking

1. select the VAR name, right click 'select similar cells'
2. select colour rows from row dropdown
3. select next cell (varname)
Check data structure

<table>
<thead>
<tr>
<th>Compare datasets, count labels per dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>• still with variable metadata</td>
</tr>
</tbody>
</table>
Strange patterns in Lab data

- define strange?
- bimodal
 - fit normal mixture eg height / weight
 - lab values with conversions
- plot lab ranges per centre to look for odd patterns
Check data structure

Box plots

Graph Builder

flagged vs. Week Number

flagged

flagged

Week Number

-10 0 10 20 30 40 50

flagged

flagged
Bilirubin values as tree map

- Tree maps typically used for categorical data of counts (AEs,...)
 - space filling rectangles with proportional to count, or size
 - colouring by another factor

- In JMP they can be other things too
 - example bilirubin / upper limit, grouped by centre within visit name
 - reveals a lot - but in a very compact way.
 - Visit fill space from top left, size & colour by average bilirubin value.

- The values are converted to a colour scale automatically
- Or you can allocate them to a variable
 - Various scales can be chosen
Check data structure

Tree map of bilirubin
Script for Tree map with custom colour scheme

Tree Map(
 Categories(:VISNAM1A, :CTR1N),
 Coloring(:flagged),
 Ordering(:VIS1N),
 Color Theme(
 "",
 {{0, 127, 180}, {254, 224, 210},
 {252, 187, 161}, {252, 146, 114},
 {251, 106, 74}, {239, 59, 44},
 {203, 24, 29}, {165, 15, 21}, {103, 0, 13}},
 {0, 0.18452380952381, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1}
),
 SendToReport(Dispatch({}, "", TreeMapBox,
 {Frame Size(1206, 587)})
)
)
Setting a colour scale

In the image, the screenshot shows the setup of a colour scale in the JMP software. The column named 'flagged' is being configured to display different colors based on specific values. The data type is set to numeric, and the modeling type is continuous. The format is set to best, and the width is 12. The color gradient is adjusted to differentiate values effectively.
Looking for extra high values
– bubble plot

- Bilirubin values over time create with graph builder

Play the movie
open ff and play movie
Script for bubble plot

New Script(
"Bubble Plot 2",
 Bubble Plot(
 X(:VISNAM1A), Y(:flagged), Time(:VIS1N),
 Coloring(:flagged), ID(:SID1A), Speed(4.32),
 Bubble Size(25.25), Time Index(2.9),
 Trail Bubbles(1), Trail Lines(1),
 All Labels(0), No Labels(0),
 Title Position(8.16, 9),
 SendToReport(
 Dispatch(
 {},
 "2",
 ScaleBox,
 {Min(0), Max(10), Inc(1), Minor Ticks(0),
 Add Ref Line(5, Solid, {214, 103, 36})})
))
)
Unique keys that are not

- counts must be $= 1$
 1. tabulate by keys into a new table
 2. filter by count :: colour cell red if count > 1
 cell plot of cell count
 3. or a tree-map with option. (black eq missing, colour by count only)
 for three key vars?,
 four key vars

- no combinations must be missing
 colour row expression...
- deduce repeat level for info, patient, visit, time, repeat,...
Errors created by programs

Check for relational structures

- given a set of tables find
 1. list of variables in common between each pair
 2. for those pairs table occurrence patterns to see which can be merged
 3. list of all shared variables
 4. any shared variables not same type/format in every table
 5. draw an ER diagram of the tables and their relationships
 6. make and check inferences about data level (patient, visit, time)
check calculations - like dose days

- plot gaps
- plot overdose and underdose
- cumulative plots - control limits per pat
- other protocol violations
- do a graphic PV dashboard
Check for unconverted Lab values

- make histograms of the variables
 - shadowgrams (overlaid kernel ests with range of smoothers)
 - by variable
 - colour by centre
 - or what ever level the normal ranges are provided on
 - look for subgroups
 - fit Normal mixtures to find group means, identify cases and deduce groups with issue
Incorrect Lab units

- how to find and quickly check for them
- lbs vs. Kg; °F vs. °C; mg /ml

Tree Map of Units, Units (preferred)
Errors created by programs

Normal ranges that aren’t

- plot ranges vs centre; age, sex,…
- by centre within Lab parameter
Summary I

- Statistical programming is unlike other types of programming because it is tied to the actual data that will be analysed.
- Programming is a craft and debugging is being a scientist (theory, experiment, refutation...)
- Because JMP is designed for analysing and viewing data it makes an excellent tool for a data programmer and a data scientist
- JMP is a data browser on steroids; it is therefore also useful for statisticians and data managers, anyone working daily with more data than fits on a sheet of paper
Summary II

- When reporting is driven by completely with metadata we will instead be debugging and working with metadata.

An interactive tool will be even more useful...
Questions
For Further Reading

JMP guides and books
Tutorials on web site and free PDF books from help menu