Optimizing Data Validation

Andrew Newbigging
Acceptable data quality in clinical trials

... data as well controlled as clinical trial data should have errors only in the range of 10 to 50 per 10,000.

This translates into .1% to .5%
There is increasing recognition that some types of errors in a clinical trial are more important than others. For example, a low, but non-zero rate of errors in capturing certain baseline characteristics of enrolled subjects (e.g., age, concomitant treatment, or concomitant illness) will not, in general, have a significant effect on study results. In contrast, a small number of errors related to study endpoints (e.g., not following protocol-specified definitions) can profoundly affect study results, as could failure to report rare but important adverse events.
How do Electronic Data Capture (EDC) systems help achieve acceptable data quality?
Data constraints

Blood Pressure:

Systolic Blood Pressure: 120 mmHg

Diastolic Blood Pressure: 80 mmHg
Data type conformance

Blood Pressure:

Systolic Blood Pressure: ABC mmHg

Diastolic Blood Pressure: 80 mmHg
Restricted value sets

Outcome:

- Recovered / Resolved
- Recovering / Resolving
- Not Recovered / Not Resolved
- Recovered / Resolved with Sequelae
- Fatal
- Unknown
Edit checks

if SystolicBloodPressure > 180
 then OpenQuery

if SystolicBloodPressure < DiastolicBloodPressure
 then OpenQuery
Edit check complexity score

if SystolicBloodPressure > 180
 then OpenQuery

Complexity score = 3

<table>
<thead>
<tr>
<th>Test data</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>No query</td>
</tr>
<tr>
<td>181</td>
<td>Query</td>
</tr>
</tbody>
</table>

if SystolicBloodPressure < 90
or SystolicBloodPressure > 180
 then OpenQuery

Complexity score = 9

<table>
<thead>
<tr>
<th>Test data</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>No query</td>
</tr>
<tr>
<td>90</td>
<td>Query</td>
</tr>
<tr>
<td>180</td>
<td>No query</td>
</tr>
<tr>
<td>181</td>
<td>Query</td>
</tr>
</tbody>
</table>
Highest complexity score = 15,495
Dataset for analysis

Production data from 300+ sponsors’ trials:

• Global pharma, CRO, biotech, academic

• Phase I, II, III, IV, post-marketing

• Americas, Europe, Asia Pacific

• English, Japanese and Chinese data entry
Dataset for analysis

Number of datapoints: 1,160,836,888

Number of edit checks: 1,137,496

Number of queries: 29,255,296
95% of data values have not been changed from initial entry
60% of edit checks raised no queries

20% raised 1 to 6 queries
One sponsor copied the same edit check (complexity score = 87) across 231 studies

No queries have ever been raised by the edit check
One sponsor, multiple studies
Systolic blood pressure

Number of datapoints 86,641

Number of queries 1,306

Number of data values changed 130
Form design

Visit Date: 10 Oct 2010

VisitDate <= Today

297,720 edit checks

266,398 queries raised
Changing form design would reduce queries by up to 20% (53,000 queries)
Conclusion

95% initial data entry accuracy is good but not good enough

Therefore edit checks are necessary

But many edit checks have little or no impact on data quality

Data analysis can help target edit checks more effectively and reduce false positive queries

Improved form design can reduce data queries