ABSTRACT

This presentation originated from the desire of the management of a midsize pharma company to get more insights in the value of implementing a metadata repository with the goal of implementing standards from the start. Assuming that it is possible to achieve 100% standardization, how much effort would still be required to set up a trial? And what is the effort to achieve 100% standardization?

The analysis was completed using an anonymized real life model of an outsourced phase III trial in a new indication. To allow full comparison, cost of time, effort and quality were quantified and standardized to effort (manhours).

The analysis shows that while there is a significant impact in setting up a trial from no standardization to some level of standardization, the time gain for setting up a trial from high level of standardization to a fully standardized trial rapidly diminishes. On the other hand the cost of Quality Control is significantly reduced in a fully standardized trial over one that is highly standardized.

This presentation aims to show a clear picture of both the cost and the benefits for implementation of standards, including thoughts on how to define a model that is right for your organization.

INTRODUCTION

This analysis includes a retrospective and prospective analysis based on real data as our industry has evolved through different levels of standardization and technology implementation. It provides insights into why we should see huge benefits in standardization, but often may not see the same results when putting the effort into practice. It concludes with recommendations on deciding what type of standardization is right for your organization and the long term benefits beyond the return on Investment.

PART I: VALUE OF STANDARDS

METHODOLOGY

The scope of the analysis includes the activities related from the design of the study (protocol or protocol outline) until creation of SDTM and define.xml. In the calculations “Effort” includes the study design discussions, EDC design and build, integration of electronic data streams, User Acceptance Testing, creation of Documentation and mapping or conversion to SDTM, including creation of define.xml, where data managers, data base designers and/or programmers are involved.

The analysis compares 3 levels of standardization (50%, 80% and full standardization) against no standardization. To evaluate the true cost of trial set-up, variable costs not associated with trial set-up effort (such as EDC hosting) were excluded, and hourly rates across cost proposals were harmonized to exclude regional variability. Effort calculators were built to model the cost of a trial. To compare trial set-up effort of the different levels of standardization, the following parameters were fixed:

- # subjects
- # sites
- Trial Duration

For each level of standardization the effort calculator was run to see the effect on complex trials (multiple or complex efficacy endpoints, phase II/III trials in complex disease areas) and on standard trials (phase I trials, non-interventional or well-defined endpoints). These results were plotted in a graph.

OBSERVATIONS

Three main conclusions were drawn from the data

1. Any level of standardization will result in a reduction of set-up effort and the impact of standardization is higher for complex trials (fig. 1).
This should not be surprising. Once standards are defined, the effort does not have to be repeated, provided there is a discipline within the team to adhere to standards. As the absolute cost of a complex trial is assumed to be higher than the absolute cost of a standard trial, the opportunity to achieve a benefit is higher in complex trials than in standard trials. Often more people are involved and simply not needing to have a discussion about something in a large team meeting creates a bigger benefit than not having the discussion in a small team (calculating man hours).

Impact of standardization on trial set-up effort

<table>
<thead>
<tr>
<th>Conclusion 1:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Any level of standardization has a positive impact on study set-up effort</td>
</tr>
<tr>
<td>- Impact of standardization on study set-up effort is higher for complex trials</td>
</tr>
</tbody>
</table>

Figure 1

2. **The more you invest in standards, the bigger the impact (fig. 2)**

So while a basic level of standardization will already give immediate benefits, the reality is that when developing standards, most teams will start with defining “the obvious”. The more detailed the standards development becomes, the more likely that complex issues, such as endpoint definitions are defined. While the immediate gain means that fewer topics are rediscussed, one can also introduce efficiencies by changing training and validation procedures (validate once, use many times). Lastly the QC effort is significantly reduced and may even be automated if you can verify deliverables against pre-defined specifications.

Impact of standardization on trial set-up effort

<table>
<thead>
<tr>
<th>Conclusion 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- A higher level of standardization has a bigger impact in reducing the set-up effort</td>
</tr>
</tbody>
</table>

Figure 2

3. **There is a finite benefit to be gained from standardization (fig. 3)**
This part is often overlooked and is the reason why statements on the extreme benefits of standards are challenged. The purpose of doing trials is to gather insights through data collected, therefore, as long as a company wants to learn, it will have to introduce new science, new hypotheses. This implies that a library of standards is never static. Using standards to set-up trials will bring the discussion forward, but the discussion still needs to take place. There seems to be a “golden rule” in our industry that there is a 12 week period between final protocola and first subject recruited, and unfortunately this is where we lose momentum. Most humans work best with a deadline

Figure 3

PART II: DEFINING THE RETURN ON INVESTMENT

Definitions

Basic Standardization: A company that is new to implementing standards, will usually opt to implement the domains well described in the CDISC SDTM Implementation Guide first. We would recommend creating visualizations, add the associated controlled terminology and CDASH/SDTM annotations and define conventions, such as reference dates and basic computational algorithms. This level of standardization will use material already available and does not require any significant technology investment.
Advanced Standardization: The next level of the standardization effort will include the definition of regularly recurring disease area specific assessments and endpoints and the associated metadata. The main goals and advantages of an advanced standardization are the re-use of library templates across studies and unambiguous communication between sponsors and vendors. Sponsors will be able to define study expectations in a common human and machine-readable format. In view of submissions and exploratory analysis, the consistency across trials will facilitate data pooling.

Full Standardization: The goal of this level of standardization is to provide full data specifications from data capture through storage and analysis (the latter not in scope of this article). While theoretically it would be possible to achieve this through common tools, such as excel, in practice it does require the investment of a metadata repository (MDR) to develop and maintain standards. Unless you have a dedicated study specifications team that fully understands the construct of an MDR, you would also need a user interface to allow study specific selection of data collection forms and the associated metadata.
Calculating the Break-even Point

Any level of standardization requires an upfront effort. In this section we will compare the effort of the investment and the gain against the same trials without standardization. The following parameters were considered to calculate the effort:

- developing standards
- governance and maintenance of standards
- technology investment
- process change and implementation
- training

Benefits of standardization include:

- communication
- quality control, including user acceptance testing
- oversight

1. Basic Standardization vs No Standardization

Basic standardization requires a relatively small upfront investment, common tools such as MS Word will suffice. As it primarily focuses on the domains that are well-defined and thus stable, maintenance of the standards is limited. The largest gain in this process is facilitated communication and a reduction in review effort, but there is limited opportunity to automate any parts of the process.
Nevertheless, we do see a recurring benefit of any level of standardization, and this effort can easily be completed by anyone, new or experienced in the development of standards. When comparing the effort and investment to set up a trial with basic standardization vs no standardization, one can see that, despite the upfront investment, the total budget for setting up 5 trials is cheaper with basic standardization than without standardization.

2. Advanced Standardization vs No Standardization

Building advanced standards, looking at the needs of your (or your Sponsor’s) trials will require a higher investment in skillsets, training and possibly process updates, on the other hand, the per trial benefit is larger. The need to invest in technology is limited (something as basic as MS Excel will do), provided the team is disciplined and adheres to the standards agreed upon. Other than providing expectations to your partner which facilitates communication, there are 2 major advantages in set-up. Firstly, it is acceptable to perform user acceptance testing at standards level. For the forms UAT’ed, it is not required to repeat this effort at trial level, provided there is no change to the form. Secondly, it is possible to compare what was provided to the CRO and what has been received in a semi-automated way, thus reducing your quality control efforts and overall oversight.
This translates to an overall larger effort in the definition of standards, but reduced effort in the per trial set-up. While the initial effort is larger, because of the gain per trial set-up, we again see that the overall budget for setting up 5 trials with advanced standardization is lower than setting up 5 trials without standardization.

Finally, we evaluated the effort of full standardization, where the sponsor will provide exact specifications for the trial and will clearly define what to expect back from the CRO. To be able to do this, the sponsor will need to invest in technology (MDR and automation), process updates, monitoring and training to facilitate this. There are multiple technology partners with varying capabilities and associated costs. The below business case was developed using Formedix.

In the calculation, we collated all Standards Development efforts into 1 bucket (standards development), regardless of whether this was done for an individual trial. In practice our experience has been that the effort is concentrated in the first 2 trials and from the 3rd trial onwards there is a significant return on investment. This is because you can build most of your standards based on experience, but the details of trial specific components will only be built as the protocol becomes available. This effort would not go away in any of the other models, but in this model, the responsibility lies with the sponsor or their designated standards development partner. Important to note in this model is that the entire effort of trial set-up is front-loaded, possibly even before first engagement with the CRO. There are 2 major benefits to this model. It is possible to generate the specifications in such a way that an automated build of the EDC is possible. If the system is properly validated, then the per trial level validation and user acceptance testing can be significantly reduced and the QC can be automated. In practice this means that you can have your EDC and SDTM/define.xml completely defined prior to FPFV, allowing the team to focus on trial content from that point forward.
Despite the much higher upfront investment, we were able to achieve the break-even point after 6 trials in comparison to no standardization at all. This did not take into account the activities associated with an automated study build.

CONCLUSION

So how would you choose which level of standardization is the right level for your company? It is possible to move from one level of standardization to the next and any effort can be carried through. Figure 10 summarizes the long-term return on investment, beyond the initial break-even point. In summary, the more you standardize, the higher the quality, the higher the potential for automation and the higher the return on investment.
ACKNOWLEDGMENTS
Thank you to Mark Wheeldon of Formedix and the Formedix team for an in-depth training on building a Metadata Repository and for allowing me to use their tools to test the validity of my assumptions as well as answering all my questions.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Jasmine Kestemont
Innovion
Zoetewei 118
2580 Putte
Belgium
Work Phone: +32473946992
Email: jasmine.kestemont@innovion.be
Web: www.innovion.be