JANSSEN AUTISM KNOWLEDGE ENGINE (JAKE®) SYSTEM IN AUTISM SPECTRUM DISORDER

Sarah Bonneux, Johnson & Johnson, Janssen Research & Development, Beerse, Belgium

ABSTRACT

Autism spectrum disorder (ASD) is a developmental disability that can cause significant social, communication and behavioral challenges. Given the high incidence of ASD, the significant unmet medical need, and long-term associated morbidity, there are multiple facets of the disorder that could benefit from novel treatments. The JAKE system is an exploratory integrated system of tools and technologies designed to optimize collection of behavior and biosensor data for research purposes in clinical ASD trials. It consists of various components including My JAKE and JAKE Sense. My JAKE is an interface to an autism personal healthcare record with tools and technologies tailored to individuals with ASD, and their caregivers/parents and healthcare providers. JAKE Sense is an experimental workbench that contains selected biosensors to assess physiological characteristics and behavior related to core symptoms of ASD. Currently, the JAKE system is exploratory, but it may potentially lead to detecting changes in response to treatment and be utilized as endpoint for interventions in ASD.

INTRODUCTION

Autism spectrum disorder (ASD) is a developmental disability that can cause significant social, communication and behavioral challenges. The total costs per year for children with ASD in the United States were estimated to be between $11.5 billion – $60.9 billion (2011 US dollars). This significant economic burden represents a variety of direct and in-direct costs, from medical care to special education to lost parental productivity.

There are currently no medications approved for the treatment of core symptoms of ASD. Given the high incidence of ASD (1 in 59 births in the United States of America [USA]), the significant unmet medical need, and long-term associated morbidity, there are multiple facets of the disorder that could benefit from novel treatments.

METHODS

THE JAKE SYSTEM

The JAKE system is an exploratory integrated system of tools and technologies designed to optimize clinical trials for ASD. Previous studies supported the usability of the JAKE System for monitoring clinical outcomes in ASD. It consists of various components, including subcomponents of My JAKE and JAKE Sense biosensors, each described below.

MY JAKE

People with ASD often have problems with social, emotional, and communication skills. They might repeat certain behaviors and might not want change in their daily activities. Many people with ASD also have different ways of learning, paying attention, or reacting to things. Signs of ASD begin during early childhood and typically last throughout a person’s life. My JAKE is designed to capture sufficiently variable presentations across all the key domains, while providing a high level of utility – effectively making it simple for caregivers and other observers to record critical information on improvement or worsening of symptoms and behaviors.

My JAKE is composed of the following components:

- ABI: A rating scale consisting of approximately 65 questions related to the core and associated symptoms of ASD.
- ABI-S: A shorter version of the ABI.
-Daily Tracker: In the morning, the caregiver will be asked to report on their dependent’s quality of sleep the night before. Additionally, caregivers will be required to select 3 behaviors related to ASD to track on a daily basis. After 6 PM each day, the caregiver is required to report on these behaviors and on their dependent’s overall type of day. All reports use an 8-point scale, ranging from ‘troubling’ to ‘encouraging’.

-Mood Report: A report that allows caregivers to report on the subject’s mood, in terms of emotional valence and energy levels.

-Journal and Event Trackers: A tracking system that allows caregivers to quickly log key ‘events’ and text-based descriptions as they happen – such as a bad night’s sleep or a positive improvement. This can be in the form of free-text journal entries or common ASD events from a pick-list.

-Therapy Tracker: A calendar-like ‘therapy tracker’ that allows caregivers to keep track of their dependent’s care-related appointments, organized in weekly or monthly views. In addition, it can keep track of treatments, and other therapies. It can also be used to set up and schedule study visits.

-Medical/Developmental History: A detailed medical and developmental history form designed to construct a picture of the subject’s ASD including treatments and other information, and personalize the caregiver’s view of this information.

JAKE SENSE

The literature has shown that differences between typically-developing (TD) children and autistic children can be detected by various physiologic and cognitive biomarkers. It is expected that biosensors will provide more direct characteristics of the ASD population than indirect assessment via questionnaires filled in by caregivers. It is also expected that changes in features extracted from the biosensors will be detected prior to changes observed in scales. JAKE Sense includes selected biosensors to assess physiological characteristics and behavior related to the core symptoms of ASD. It is divided into two primary components: a set of continuous, wearable biosensors that gather information on a daily basis, and a set of periodic biosensors designed to gather feedback during a battery of experimental tasks administered via computer in a lab setting.

Continuous biosensors

An actigraph measures activity while worn on a subject’s wrist like a watch. Based on data recorded during the day, time periods of child involvement in sedentary, light, moderate, and moderate-to-vigorous activities are expected to correlate with disease severity, where an ASD population is expected to spend more time in sedentary activity, with less time in light, moderate and moderate-to-vigorous activity than TD children of the same age.

Periodic biosensors

Periodic Biosensors will be assessed only during the time that the subject is exposed to specific visual and auditory tasks or stimuli via a computer interface (the JAKE Task Battery). The Periodic Biosensor array consists of an EEG, an eye-tracker, facial affect recognition via webcam, and a device for ECG recordings.

DATA FLOW

The input from My JAKE and JAKE Sense will be processed separately via the My JAKE Data Pipeline and JAKE Sense Data Pipeline systems, respectively. Inputs from the JAKE Portal and JAKE Sense all feed through the JAKE Data Pipeline, where raw data are archived, and feature extraction occurs. Finally, cleaned data and analyses are stored in the Janssen Research Data Warehouse (Janssen RDW) and combined with clinical trial databases.

JAKE SENSE DATA PIPELINE

JAKE Sense Data Pipeline is an internal set of tools designed specifically to handle data collected by JAKE Sense. Data collected through the JAKE Sense Workbench, a platform that will link together and synchronize all components of the Periodic Biosensor collection as well as the Continuous Biosensor while presenting the JAKE Task Battery, is transmitted directly to the JAKE Sense Data Pipeline.
MY JAKE DATA PIPELINE

My JAKE reads and writes to individual HealthVault (HV) accounts and uses HV as the primary source of health data and subject authentication. My JAKE will have access to the full HV account, but any data transferred to the clinical database will be scrubbed of personally identifiable information. My JAKE data, transcribed to HealthVault, is translated in a multiple csv file structure described in the Analytics Data Elements (ADE). The ADE document is utilized to map the relationships between the data elements in My JAKE (Web and Mobile) applications to Microsoft HealthVault (HealthVault) and the My Jake Data Pipeline (JDP) extracts. It contains the attributes, definitions, data mapping, and user roles for the My JAKE system. These data are linked with clinical trial data, to allow integration of multiple experimental features and novel variables into analyses.

CONCLUSION

Currently, the JAKE system is exploratory, but it may potentially lead to detecting changes in response to treatment and be utilized as endpoint for interventions in ASD.

REFERENCES

ACKNOWLEDGMENTS

Acknowledgments go after your references. This section is not required.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Sarah Bonneux
Johnson&Johnson
Janssen Research & Development
Turnhoutseweg 30
Beerse / 2340
Belgium
Work Phone: 003214605646
Email: sbonneux@its.jnj.com

Brand and product names are trademarks of their respective companies.