Better Low-Cost InfoGeographics Today:
Improved Readability and Usability for PROC GMAP Output
LeRoy Bessler, Miller Brewing Company

Introduction and Acknowledgements

Learn better design and use of SAS® and SAS/GRAPH® software for more effective, more efficient exploration and presentation of geographic-keyed data. The macros and programs given here are reusable and adaptable, by even a novice or casual user.

InfoGeographics® is my name for "statistical mapping", "thematic mapping", "Business Geographies", or the activities supported by a Geographic Information System (GIS). The trade press term "Business Geographies" emphasizes that GIS software is something business enterprises can profitably use, and therefore should acquire. The term InfoGeographics® is purpose-neutral: IG is useful for business, government, academe, and nonprofit organizations. Low-cost IG can be done today, with a tool already in SAS/GRAPH®--i.e., PROC GMAP. Of course, you may need the power of a GIS, and can justify the extra software expense and the possible extra hardware expense. In any case, concepts and techniques presented here presumably can be used or implemented with a GIS package or a custom GIS application.

When annotating areas filled with gray shades, or with dark or intense colors, custom-developed "blanking" provides an inset box of white space, to assure readability. It was first reported on by S. J. Subich in "Enhanced Usability for Annotation on SAS/GRAPH Maps", in WISÁS Proceedings, Volume 5, June Issue, WISÁS Inc. (South Milwaukee, Wis.), 1993.

I provide adjustments to the USA state-center coordinates in the vendor-supplied SAS/GRAPH data set MAPS.USCENTER. They permit more annotation to be included without crossing the state boundary. The annotation box is as equidistant as possible from all near-points of the boundary.

Better than using defaults, or sorting and inspecting responses to "hand pick" ranges (which may be arbitrary anyhow), is Automatic Rationale-based Response Range Assignment (ARRRA), using "Software Intelligence": Applications That Customize Themselves", in Proceedings of the Eighteenth Annual SAS Users Group International Conference, SAS Institute Inc. (Cary, N.C.), 1993.

My general-purpose maps--The Four-Color/Four-Range Map, The Five-Color/Five-Change-Range Map, and The N-Color/N-Cluster Map—are usable for many InfoGeographic applications. They communicate as much information as possible with a single image.

I am pleased to thank Gary F. Plazky, who suggested I investigate cluster analysis as a tool to solve The N Color Map Problem.

Why Maps?

"Of all the contrivances hitherto devised for the benefit of geography, the map is the most effective. In the extent and variety of its resources, in rapidity of utterance, in the copiousness and completeness of the information it communicates, in precision, conciseness, perspicuity, in the happy combination of so many and such useful qualities, a map has no rival. Everything we say or do has reference to place, and wherever place is concerned a map deserves welcome. There is scarcely one department of knowledge, physical or moral, beyond the sphere of its usefulness; to geography it is indispensable. Modern technology has advanced the process of making maps considerably, and a map still has no rival in its usefulness."

G.B. Geenough
Presidential Address to The Royal Society
London, England
1840

Most SAS user sites have large amounts of data that include geographic unit area designators (in the USA, state code is probably commonest). Though the data can be reported in various tabular formats, a geographic effect (e.g., that of proximity) is not easily revealed without an InfoGeographic. Also, for presentation, a visual image is more interesting, stimulating, and memorable than a mere listing.

Why Annotation?

Any map can be supplemented with detail look-up data. Detail can be a full list in key sequence, a ranking report based on response level, or a Top NN List of the NN most significant (i.e., highest response) geographic unit areas. Better is to lay all detail (including rank) on the respective geographic areas, with automated annotation. Interactive graphic editing is not suitable for hands-off, production applications. Most good, supposedly one-shot applications usually end up as ongoing production.

Just Say "No" to the Designer Drug 3D

Use the straightforward two-dimensional CHOROPLETH map. The 3D alternatives--SURFACE, PRISM, and BLOCK maps--are picturesque, but impractical. SURFACE maps are too vague for serious communication. PRISM and BLOCK maps suffer from the response for some "high" states hiding that for "low" states.

Make It "Easy On the Eyes" With Area Fills

Use of parallel lines or cross-hatching not only yields an ugly image, but also can confuse boundary with area-fill elements.

For some InfoGeographic applications, use of area fills to encode different levels of response is functionally inappropriate. For the use of dot maps or bubble maps, see Plazky G. F., "Using the Annotate Facility with Maps: A Tutorial", in Proceedings of MVSUG 97, Midwest SAS Users Group (Fox Point, Wis.), 1991.

Figure 1: SAS/GRAPH Defaults Unacceptable

The map in Figure 1 (done with the program in Appendix 3) is an unacceptable map of a real data set, using PATTERN statements, COUTLINE, and otherwise a default invocation of PROC GMAP.

The adverse result of accepting SAS/GRAPH default ranges is due to two outliers, 736 and 447; all other values are below 179. Note, also, that default legend text shows range midpoints, instead of the range boundaries which you might expect.

Four Color Map Problems

The Original Four Color Map Problem: Can you prove that four is the smallest number of colors needed to paint a map so that no two adjacent countries are the same color?

The Four-Color/Four-Range Map Problem: If you want to restrict an InfoGeographic to four ranges that span the total range of the response data, how can/should the program automatically specify the ranges?

Four Color Map Problem Solved, Using Automatic Rationale-based Response Range Assignment

Even without an extreme result as Figure 1, it is better to make a deliberately choice of ranges, based on a rationale. In principle, that requires you to have knowledge of the data distribution. Before creating the map, one can first do a PROC SORT and PROC PRINT, and inspect the data. However, that is inconvenient, time-consuming, and laborious, and can result in an arbitrary decision anyhow.
In a prior paper—"Effective and Efficient Information Delivery for Executive Management" in Proceedings of the Seventeenth Annual SAS Users Group International Conference, SAS Institute Inc. (Cary, N.C.), 1992—I emphasized that, typically, a small subset of the observations account for a large majority, or even almost all, of the total response. A Top 10 or Top NN Report (i.e., some one-page-or-less report) usually suffices, often accounting for 80% to 99% of the total response. For the data depicted in Figures 1 and 2, the Top 10 states account for 66.4% of the total response. With 50 states and DC, the Top 10 states are, by definition, always above the 80th percentile.

My favorite percentile is the 50th, i.e., the median. What I call "The Power of the Median" is its representative centrality. The influence of outliers suffered by the regrettable Popular average is absent.

Regardless of the specific choices, it is natural to break up the total range based on percentiles. One can use, e.g., the 20th percentile, median (the 50th percentile), and 80th percentile. The resulting four ranges may be called, e.g., Very Low, Below Median, Above Median, and Very High. Other rationales can be built-in instead. E.g., one might prefer to use the mean and a multiple of the standard deviation to develop ranges. In that connection, consider how you might use Chebychev's Theorem.

Percentile-based ranges create a talking point for the map. Software defaults or arbitrary breakpoints cannot provide concept-based defendability.

The program in Appendix 4 and macros in Appendices 6 and 8 solve The Four Color Map Problem, using SI to do ARBRIA. See the map in Figure 2. The legend displays "trimmed" numeric ranges, instead of text, if you specify LABELTXT=NO. "Trimmed" ranges use actual data values, emphasizing the inter-range separation. Traditional ranges are "contiguous".

Maximal Optimized Annotation, and Blanking

The map in Figure 2 does just about everything one could think of for an InfoGeographic. (OK, everything that I could think of.) Of course, if one also wants, say, Percent of Whole, a four-line annotation could be done with a modification to the ANNOVALU DATA Step in the USANNO3 macro. Four-line annotation would read: application to attributes to the state-center y coordinate, and using only POSITIONS 'B' and 'B'. Then one would need to specify a smaller value for ANNOFONT.

Or one could go the opposite direction, and provide less annotated information. Two-line annotation should use POSITIONS 'B', 'C', 'E', and 'F' instead of the six values used here. Then one could specify a larger value for ANNOFONT.

Annotation with response value has obvious benefit. And since not everyone knows each state name just by shape and relative location on the map, it is "nice to have" that identification. The provision of Rank based on response value reflects my graphic and tabular communication design postulate that most readers and viewers ought to be able to quickly identify what's important.

The map uses blanking (i.e., the white boxes) to assure readability, and relies on my recommended annotations (see Appendix 1) to the state-center coordinates from MAPS.USCENTER.

Also, the map incorporates a star to highlight the conference location. (Instead, the city marker could have been the city name, or "SUGI 14".) See DATA Steps CITYSTAR and ANNODATA in the program in Appendix 4 for how to do this. Appendix 2 is a program to list the GMAP US cities. For a city not listed, pick the next closest city listed, and adjust coordinates. Annotating cities was demonstrated in the manual for Version 6 of SAS/GRAPH. It's included here for completeness—to provide a single, reusable, adaptable model that includes all the techniques likely to be needed for professional-grade InfoGeographics.

I had to develop "boundary-respecting blanking" for the states of Florida, Tennessee, and West Virginia. Strictly rectangular boxes overlap the state boundaries if the annotatable white space is kept at sufficient size. Study the three state-specific WHEN paragraphs in the BOXES DATA Step in the USANNO3 macro to see how adequate annotatable area is provided without white space crossing state lines.

Annotation Without Blanking

As of Release 6.10, blanking is still missing from SAS/GRAPH. Even if someday SAS/GRAPH blanking is provided, the vendor implementation may not offer the flexibility achievable with the custom solution presented here.

Blanking is not needed for area fills that use light colors (e.g., light pink, light yellow, light blue, etc.). But not all devices can render sufficiently light colors. Also, many publications (e.g., SUGI Proceedings) do not accept color illustrations.

A very interesting, informative map is one that someone may want to copy. Though color copiers are increasingly available, they are not as widespread, cheap, and fast as black-and-white. Thus, annotated gray-shade maps usually are most practical. For readability, whether of originals or of copies, blanking is always required when annotating in black over gray-shade area fill.

The Five-Color/Five-Change-Range Map Problem

After solving The Four Color Map Problem for SUGI 19, I found myself facing The Five Color Map Problem—which I solved for SUGI 20.

Suppose the responses are positive, negative, and no change. Suppose we want something more interesting than the three obvious response ranges. Tentatively, let's classify the responses as big gains, other gains, no change, big losses, and other losses—necessitating the use of five colors.

For this case study, let's again pick the USA map. Rather than using percentiles, let's distinguish the Ten Best Gains and the Ten Worst Losses. (Please excuse me. Strictly speaking, there can be only one best and only one worst.) Of course, it may happen that there are no gains, fewer than ten gains, or only ten gains; and the same applies to losses.

Area Fill for The Change Map

One might naively pick green and red as natural choices for gains and losses—when increase is good and decrease is bad. However, green and red cannot be distinguished if one suffers from the commonest form of color blindness, and color blindness is not rare (1 out of 14 males has some form of color blindness).

My recommendations are: Blue = Ten Best Gains; Light Blue = Other Gains; Red = Ten Worst Losses; Light Red = Other Losses; and White = No Change.

Best Legend for The Change Map

The best legend for this application will do the following: (a) show the area fill for the Ten Best Gains (Worst Losses), if there are more than ten gains (losses); (b) show the area fill for the Gains (Losses), if there are ten or fewer gains (losses), and will list how many gains (losses) there are; (c) show the area fill for the Other Gains (Losses), if there are more than ten gains (losses), and will list how many Other Gains (Losses) there are; and (d) show the area fill for the Unchanged, if there are any, and will list how many Unchanged there are.

With this design, the legend can have as many as five entries or as few as one entry. It will have entries only for the cases manifested by the data, and those entries will provide area-fill sample, state count, and category description. What more could you ask for? Why would you ask for less?
Five Color Map Problem Solved, Using Automatic Rationale-based Response Range Assignment

The program in Appendix 5 and macros in Appendices 7 and 8 solve The Five Color Map Problem. See the map in Figure 3.

Note that the MAPCOL5C macro must be able to handle 14 different cases with its nested PATTERN5 macro. MAPCOL5C can generate 14 different CHORO variable range sets. Its custom legend text must actually support 30 different cases due to, e.g., the possibility of "Gain" vs. "Gain" and "Losses" vs. "Loss." In an automated professional-grade InfoGeographic application (where there is no ad hoc manual editing to update the program to suit the proclivities of the data), the category text in the legend must automatically match the plurality or singularity of category count.

A possible future enhancement of the MAPCOL5C macro would allow user specification of legend text (to substitute for the herein hard-coded words "Gain," "Gain," "Losses," "Losses," "Best," "Worst," "Other") as macro parameter assignments.

Why USANNOS Handles State Codes As It Does

Various FIPxxx and STOXxxx SAS functions perform conversion between state FIPS codes, abbreviations, and names.

The input data set contains the two-character state abbreviation. The program converts it to the two-digit state FIPS code, using the STFIPS function. The abbreviation is dropped to produce a minimal data set, but dropping it is not necessary. Subsequent processing, by USANNOS, relies on the FIPS code. But, at some points in the macro, the FIPSTATE SAS function is used in comparisons to identify states which need special handling. Those states are specified by their alphabetic codes.

Conversion back to alphabetic state codes which were initially present, converted from, and then (unnecessarily) dropped seems inefficient, and/or clumsy, and/or unjustified. Well, not only may it be the case that more typical input data sets might contain only the FIPS code, but also PROC GMAP and its map data sets identify states only by FIPS code. Hence the macro's focus on FIPS code. However, when testing observations for specific states, the macro is more intelligible if it identifies those states by their alphabetic codes. In fact, the FIPNAME or FIPNAMETL SAS function could instead be used to test with state names.

The N Color Map Problem & Its ARBRRA Solution

After solving The Four Color Map Problem and The Five Color Map Problem, I was still dissatisfied by lack of generality in these ways of presenting geo-based information.

If there is nothing inherent in the nature of the responses (e.g., they are not signed numbers), nor in your or your audience's preference as to how to show or see the information, then you have no guide for choice of response ranges. Your only recourse is to inspect the data to find natural groups of responses. Intuitively, "natural" groups or classes are distinguishable by sufficient separation between their ranges. Choice of the number N of ranges is still arbitrary, but at least the boundaries of well separated ranges can be justified.

An Automated Rationale-based tool that reveals those natural ranges, for any given N, is PROC CLUSTER. It offers eleven statistical methods for cluster analysis. The one used here is METHOD=CENTROID. It copes with outliers well. I can't say which is the "best" clustering method. For me, reasonability of results is the measure of adequacy of any method used. However, my macro MAPCOLNCC (see Appendix 10) permits user specification of METHOD=. The macro builds PATTERN statements, legend text, and the response-range format.

Macro MAPCOLNCC requires specification of the number N of ranges (i.e., clusters), where maximum N is 7. (The macro could be enhanced to support N greater than 7.) The user may request default colored area fills, may specify other colors, or may accept default gray-shade area fills. The gray shades are selected to be maximally distinguishable, given the number required.

Distinguishability of gray shades is always a potential problem, either on the original, or after photocopying. That's why the macro supports a maximum of only 7 ranges. With the printer I used for Figure 4, the five-gray-shade map has no distinguishability problem, the six-gray-shade map is marginal, and the seven-gray-shade map is hard to interpret.

If you use color, you can safely revise the macro to accommodate N greater than 7. But then you need a strategy to pick colors, unless you use one hue and vary the lightness—in which case you will have a distinguishability problem for sufficiently large N.

See Figures 4 for maps obtained for various numbers of clusters (ranges). For simplicity, annotation is omitted. See Appendix 9 for the program used to produce The Seven Color Map.

Notes

SAS and SAS/GRAPH are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. * denotes USA registration. InfoGeographics is a trademark of Bester und Von Baltenberg AG.

My SAS code is offered "as is"—test any that you decide to use.

Author

Dr. LeRoy Bessler
P.O. Box 96
Fox Point, WI 53201-0096, USA
Telephone: 414-351-6745

Appendix 1: Adjustments for MAPS.USCENTER

Appendix 2: Program to List GMAP US Cities
Appendix 3: Program for Default Map (Figure 1)

```plaintext
/* section statements */
DATA INDATA;
INFILE i;
INPUT STATEAB & ATTEND;
STATE = STFIPS(STATEAB);
RUN;
/* pattern statements */
/* title statements */
PROC SMAP DATA=INDATA MAP=MAPS.US ALL;
ID STATE;
CHORD ATTEND / COUTLINE=BLACK;
RUN;
```

Appendix 5: Program for Five Color Map (Figure 3)

```plaintext
/* section statements */
DATA INDATA;
INFILE i;
INPUT STATEAB & ATTEND;
STATE = STFIPS(STATEAB);
DROP STATEAB;
RUN;
/* pattern statements */
/* title statements */
PROC SMAP DATA=INDATA MAP=HBC.US ALL;
ID STATE;
CHORD GROUP /
AND=MGDATA
LEGEND=LEGEND
DISCRETE
MISSING
COUTLINE=BLACK;
FORMAT GROUP HTCOLOR.;
RUN;
```

Appendix 4: Program for Four Color Map (Figure 2)

```plaintext
/* section statements */
DATA INDATA;
INFILE i;
INPUT STATEAB & ATTEND;
STATE = STFIPS(STATEAB);
DROP STATEAB;
RUN;
/* pattern statements */
/* title statements */
PROC SMAP DATA=INDATA MAP=HBC.US ALL;
ID STATE;
CHORD ATTEND / AND=MGDATA
LEGEND=LEGEND
DISCRETE
MISSING
COUTLINE=BLACK;
FORMAT ATTEND HTCOLOR.;
RUN;
```

Appendix 6: MAPCOLOR Macro

```plaintext
/* section statements */
DATA INDATA;
INFILE i;
INPUT STATEAB & ATTEND;
STATE = STFIPS(STATEAB);
RUN;
/* pattern statements */
/* title statements */
PROC SMAP DATA=INDATA;
OUT=TOPOMAP;
RESPONSE=SHRHCS;
CHORD=GROUP;
TOPOCOUNT=1; /* same as default */
CUTOFF=50;
CUTOFF=50;
CUTOFF=50;
CUTOFF=50;
RUN;
```
PROC SORT DATA=DATA OUT=SORTED; BY DESCENDING ARESPONSE; RUN;
DATA TOPBRAIN OTHBRAIN NOCHANG OTHER;
RETAIN COUNTTS COUNTTT COUNTTTT COUNTTTTT; IF _N_ = 1 THEN DO;
 CALL SYMPUT(‘COUNTTS’,TRIM(LEFT(‘COUNTTS’)));// group 1 /
 CALL SYMPUT(‘COUNTTT’,TRIM(LEFT(‘COUNTTT’)));// group 2 /
 CALL SYMPUT(‘COUNTTTT’,TRIM(LEFT(‘COUNTTTT’)));// group 3 /
 CALL SYMPUT(‘COUNTTTTT’,TRIM(LEFT(‘COUNTTTTT’))];// group 4 /
END;
SET SORTED END=LAST;
IF _N_ <= STOPCOUNT AND ARESPONSE > 0 THEN DO;
 SCHORDVAR+1;
 COUNTTS=COUNTTS+1;
 OUTPUT TOPBRAIN;
END;
ELSE IF ARESPONSE > 0 THEN DO;
 COUNTTS=COUNTTS+1;
 OUTPUT OTHBRAIN;
END;
ELSE IF ARESPONSE = 0 THEN DO;
 COUNTTT=COUNTTT+1;
 OUTPUT NOCHANG;
END;
ELSE DO;
 OUTPUT OTHER;
END;
IF LAST THEN DO;
 CALL SYMPUT(‘COUNTTS’,TRIM(LEFT(‘COUNTTS’)));
 CALL SYMPUT(‘COUNTTT’,TRIM(LEFT(‘COUNTTT’)));
 CALL SYMPUT(‘COUNTTTT’,TRIM(LEFT(‘COUNTTTT’)));
 IF COUNTTTT = 1 THEN CALL SYMPUT(‘TOPTEXT’,’Gain’);
 ELSE IF COUNTTTT = 0 THEN CALL SYMPUT(‘TOPTEXT’,’Other Gain’);
 ELSE CALL SYMPUT(‘TOPTEXT’,’Other Others’);
END;
RUN;
PROC SORT DATA=DATA OUT=SORTED; BY ARESPONSE;
RUN;
DATA OTHBRAIN TOPOBRAIN;
RETAIN COUNTT COUNTTT COUNTTTT COUNTTTTT 0;
IF _N_ = 1 THEN DO;
 CALL SYMPUT(‘COUNTT’,TRIM(LEFT(‘COUNTT’)));// group 4 /
 CALL SYMPUT(‘COUNTTT’,TRIM(LEFT(‘COUNTTT’)));// group 5 /
 CALL SYMPUT(‘TOPTEXT’,’’);
 CALL SYMPUT(‘OTHTEXT’,’’);
END;
SET SORTED END=LAST;
IF _N_ <= STOPCOUNT THEN DO;
 SCHORDVAR+1;
 COUNTTT=COUNTTT+1;
 OUTPUT OTHBRAIN;
END;
ELSE DO;
 SCHORDVAR+1;
 COUNTTTT=COUNTTTT+1;
 OUTPUT TOPOBRAIN;
END;
IF LAST THEN DO;
 CALL SYMPUT(‘COUNTT’,TRIM(LEFT(‘COUNTT’)));
 CALL SYMPUT(‘COUNTTT’,TRIM(LEFT(‘COUNTTT’)));
 IF COUNTTTT = 1 THEN CALL SYMPUT(‘TOPTEXT’,’Less’);
 ELSE IF COUNTTTT = 0 THEN CALL SYMPUT(‘TOPTEXT’,’Lesses’);
 ELSE CALL SYMPUT(‘TOPTEXT’,’Hurst Lesses’);
 IF COUNTTTT = 1 THEN CALL SYMPUT(‘OTHTEXT’,’Other Less’);
 ELSE CALL SYMPUT(‘OTHTEXT’,’Other Others’);
END;
RUN;
DATA NAPCOLSC;
PROC FORMAT;
VALUE PNTCOLS 1=’COUNTTS TOPTEXT’ 2=’COUNTTT TOPTEXT’ 3=’COUNTTTT Unchanged’ 4=’COUNTTTTT TOPTEXT’
RUN;
DATA SORTEOBS;
SET TOPBRAIN OTHBRAIN NOCHANG OTHBRAIN TOPOBRAIN;
RUN;
XEND NAPCOLSC;

Appendix 7: MAPCOL5C Macro
Figure 1. Map of San Francisco SUGI 14 Attendance, By State

PROC GMAP Default Ranges Unacceptable
Figure 2. Map of San Francisco SUGI 14 Attendance, With State, Count, Rank, & City St...
Figure 3. Vespucci Color Map Company – 1994 Sales (in millions of dollars) and Change in Sales.
Figure 4. Maps of San Francisco SUGI 14 Attendance, By State – Ranges from PROC CLUSTER METHOD=CE

7 Clusters

5 Clusters

4 Clusters