Computing Exact Power for Multivariate Repeated Measurements Design
Jimmy Thomas Efird, Ph.D., M.Sc.1,2
Kavitha Alimineti, B.Sc.1
1Biostatistics and Data Management Facility, John A. Burns School of Medicine, Honolulu, HI; 2Department of Biostatistics and Epidemiology, UCSF School of Medicine, San Francisco, CA

ABSTRACT
Repeated measurements often arise in medical and laboratory research when investigators are constrained by costs or time to give all study treatments to each experimental unit/participant one at a time. In this paper, we derive a generalized method for computing the exact power for a repeated measurements design given the simple case of no learning effect.

INTRODUCTION
Given the case of (t) treatments applied in sequence to (n) experimental units following a washout period, the Hotelling’s T^2-statistic may be used to test the equality of mean treatment effects. If the null hypothesis is rejected, then simultaneous confidence intervals on all contrast derivable from the (t) treatments may be constructed to determine which treatments differ.

METHODOLOGY
Let \mathbf{y} denote the vector of treatment means, \mathbf{S}_{trt} the sample covariance matrix and $\mathbf{C}_{(t-1)\times t}$ the matrix of invariant contrasts. A direct extension of the univariate to multivariate space (Kelsey, et al., 1996; Kramer, 1972) gives the exact power for the simple repeated measurements design as

$$\text{power} = \frac{1}{\sqrt{(n)(\mathbf{c}\mathbf{y}')(\mathbf{c}\mathbf{S}_{\text{trt}}^{-1}\mathbf{c})^{-1}(\mathbf{c}\mathbf{y}') - \frac{(t-1)(n-1)}{(n-t+1)} F_{t-1,n-t+1}}}.$$

where $F_{(t-1,n-t+1)}$ is the $100(1-\alpha)$ centile of the F-distribution with (t-1) and (n-t+1) degrees of freedom (Johnson and Wichern, 1982). When t=2, we see that equation number (1) gives the exact power for the univariate case.

EXAMPLE
We wish to compare t=3 drugs used in the treatment of erectile dysfunction with respect to length of effect. If we are given that the vector of treatment means equals

$$\mathbf{y} = [1.2, 1.3, 2.1]$$

and that the sample covariance matrix equals
then from Figure 1, we see that a sample of size $n=25$ will have power $\geq 87\%$ at the
$\alpha = 0.05$ level of significance to reject the null hypothesis (e.g., mean duration of effect
are equal for each drug) given that it is false.

SAS® CODE
The SAS® code used to compute the data points plotted in Figure 1 is shown in Figure 2.

Figure 2

```sas
proc iml worksize=500;
    start main;
        t=3;
        c={1 0 -1, 1 -1 0};
        ybar={1.2, 1.3, 2.1}`;
        s={2.3 2.2 1.4, 2.2 2.5 1.9, 1.4 1.9 2.4};
        do n=5 to 50 by 0.01;
            do alpha=0.001, 0.01, 0.025, 0.05, 0.10, 0.20;
                power=probt(sqrt(n*(c*ybar`)`*inv(c*s*c`)*)
                    (c*ybar`))-sqrt(((t-1)*(n-1))/(n-t+1))*
                    finv(1-alpha,t-1,n-t+1),n-1);
                print n alpha power;
            end;
        end;
    finish;
run main;
```
CONCLUSION
By taking advantage of the covariance structure among variables, the multivariate approach provides an efficient means for testing treatment differences in a repeated measurements design. In this paper, we have derived a method for computing the exact power for this procedure based upon the Hotelling’s T^2-statistic. The method is a direct extension from univariate space and provides a generalized framework for a broader class of multivariate power computation.

REFERENCES

ACKNOWLEDGMENTS
This manuscript was supported by NIH Grant Number G12RR003061 from the National Center for Research Resources.

CONTACT INFORMATION
Comments and questions may be directed to the authors at:

Jimmy Thomas Efird, Ph.D., M.Sc.
Director, Biostatistics and Data Management Facility
Associate Professor
John A. Burns School of Medicine
1960 East-West Road
T-201B
Honolulu, HI 96822-2319
Email: Jimmy.efird@stanfordalumni.org

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ®indicates registration.
Figure 1: Exact Power Analysis for Multivariate Repeated Measurements Test

$\mathbf{ybar} = [1.2, 1.3, 2.1]$, $\mathbf{S} = [2.3, 2.2, 1.4, 2.2, 2.6, 1.9, 1.4, 1.9, 2.4]$