Using PROC SGPLOT for Quick High Quality Graphs
Lora D. Delwiche, University of California, Davis, CA
Susan J. Slaughter, Avocet Solutions, Davis, CA

ABSTRACT
New with SAS® 9.2, ODS Graphics introduces a whole new way of generating high quality graphs using SAS. With just a few lines of code, you can add sophisticated graphs to the output of existing statistical procedures, or create stand-alone graphs. The SGPLOT procedure produces a variety of graphs including bar charts, scatter plots, and line graphs. Because ODS Graphics uses the Output Delivery System, graphs can be sent to ODS destinations, and use ODS styles. This paper shows how to produce different types of graphs using PROC SGPLOT, how to send your graph to different ODS destinations, and how to apply ODS styles to your graph.

INTRODUCTION
When ODS Graphics was originally conceived, the goal was to enable statistical procedures to produce sophisticated graphs tailored to each specific statistical analysis, and to integrate those graphs with the destinations and styles of the Output Delivery System. In SAS 9.2, over 60 statistical procedures have the ability to produce graphs using ODS Graphics. A fortuitous side effect of all this graphical power has been the creation of a set of procedures for creating stand-alone graphs (graphs that are not embedded in the output of a statistical procedure). These procedures all have names that start with the letters SG (SGPLOT, SGSCATTER, SGPANEL, and SGRENDER). This paper focuses on one of those new procedures, the SGPLOT procedure.

PROC SGPLOT creates one or more graphs and overlays them on a single set of axes. (There are four axes in a set: left, right, top, and bottom.) Other SG procedures create panels with multiple sets of axes, or render graphs using custom ODS graph templates. PROC SGPLOT produces many types of graphs. In fact, this one procedure produces 15 types of graphs.

ODS GRAPHICS VS. TRADITIONAL SAS/GRAPH
To use ODS Graphics you must have SAS/GRAPH software which is licensed separately from Base SAS. Some people may wonder whether ODS Graphics replaces traditional SAS/Graph procedures. No doubt, for some people and some applications, it will. But ODS Graphics is not designed to do everything that traditional SAS/Graph does, and does not replace it. For example, ODS Graphics does not create contour plots; for contour plots you need to use traditional SAS/GRAPH.

Here are some of the major differences between ODS Graphics and traditional SAS/GRAPH procedures.

<table>
<thead>
<tr>
<th>Traditional SAS/GRAPH</th>
<th>ODS Graphics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphs are saved in SAS graphics catalogs</td>
<td>Produces graphs in standard image file formats such as PNG and JPEG</td>
</tr>
<tr>
<td>Graphs are viewed in the Graph window</td>
<td>Graphs are viewed in standard viewers such as a web browser for HTML output</td>
</tr>
<tr>
<td>Uses GOPTIONS statements to control appearance of graphs</td>
<td>Uses ODS styles to control appearance of graphs</td>
</tr>
</tbody>
</table>

VIEWING ODS GRAPHICS
When you produce ODS Graphics in the SAS windowing environment, for most destinations the Results Viewer window opens displaying your results. However, when you use the LISTING destination, graphs are not automatically displayed. You can always view your graphs by double-clicking their graph icons in the Results window.

EXAMPLES

HISTOGRAMS
Histograms show the distribution of a continuous variable. The following PROC SGPLOT uses data from the preliminary heats of the 2008 Olympics Men's Swimming Freestyle 100 m event. The histogram shows a variable, TIME, which is the time in seconds for each swimmer.

```sas
* Histograms;
PROC SG PLOT DATA = Freestyle;
   HISTOGRAM Time;
   TITLE "Olympic Men's Swimming Freestyle 100";
RUN;
```

![Histogram of Olympic Men's Swimming Freestyle 100](image-url)
The next PROC SGPLOT uses a HISTOGRAM statement with a DENSITY statement to overlay a density plot on top of the histogram. The default density plot is the normal distribution. When overlaying plots, the order of the statements determines which plot is on top. The plot resulting from the first statement will be on the bottom followed by any subsequent plots.

```
PROC SGPlot DATA = Freestyle;
  HISTOGRAM Time;
  DENSITY Time;
  TITLE "Olympic Men's Swimming Freestyle 100";
RUN;
```

BAR CHARTS
Bar charts show the distribution of the values of a categorical variable. This code uses a VBAR statement with the variable REGION. The chart shows the number of countries in each region.

```
* Bar Charts;
PROC SGPlot DATA = World;
  VBAR Region;
  TITLE 'Countries by Region';
RUN;
```
This bar chart is like the first one except that the bars have been divided into groups using the GROUP= option. The grouping variable is a categorical variable named POPGROUP. The GROUP= option can be used with many SGPLOT statements (see Table 1).

```
PROC SGPLOT DATA = World;
  VBAR Region / GROUP = PopGroup;
  TITLE 'Countries by Region and Population Group';
RUN;
```

In this code, a RESPONSE= option has been added. The response variable is TVSTATIONS, the number of stations in each country. Now each bar represents the total number of television stations for a region.

```
PROC SGPLOT DATA = World;
  VBAR Region / RESPONSE = TVStations;
  TITLE 'Total TV Stations by Region';
RUN;
```
SERIES PLOTS
In a series plot, the data points are connected by a line. This example uses the average monthly rainfall for three cities, Beijing, Vancouver and London. Three SERIES statements overlay the three lines. Data for series plots must be sorted by the X variable. If your data are not already in the correct order, then use PROC SORT to sort the data before running the SGPLOT procedure.

* Series plot;
PROC SGPLOT DATA = Weather;
 SERIES X = Month Y = BRain;
 SERIES X = Month Y = VRain;
 SERIES X = Month Y = LRain;
 TITLE 'Average Monthly Rainfall in Olympic Cities';
RUN;

EMBELLISHING GRAPHS
So far the examples have all shown how to create basic plots. The remaining examples show statements and options you can use to polish graphs.

XAXIS AND YAXIS STATEMENTS
In the preceding series plot, the variable on the X axis is Month. The values of Month are integers from 1 to 12, but the default labels on the X axis have values like 2.5. The option TYPE = DISCRETE tells SAS to use the actual data values. Other options change the label and set values for the Y axis, and add grid lines.

* Plot with XAXIS and YAXIS;
PROC SGPLOT DATA = Weather;
 SERIES X = Month Y = BRain;
 SERIES X = Month Y = VRain;
 SERIES X = Month Y = LRain;
 XAXIS TYPE = DISCRETE GRID;
 YAXIS LABEL = 'Rain in Inches' GRID VALUES = (0 TO 10 BY 1);
 TITLE 'Average Monthly Rainfall in Olympic Cities';
RUN;
PLOT STATEMENT OPTIONS

Many options can be added to plot statements. For these SERIES statements, the options LEGENDLABEL=, MARKERS, AND LINEATTRS= have been added. The LEGENDLABEL= option can be used with any of the plot statements, while the MARKERS and LINEATTRS= options can only be used with some plot statements (see Table 1).

* Plot with options on plot statements;
PROC SGPLOT DATA = Weather;
 SERIES X = Month Y = BRain / LEGENDLABEL = 'Beijing'
 MARKERS LINEATTRS = (THICKNESS = 2);
 SERIES X = Month Y = VRain / LEGENDLABEL = 'Vancouver'
 MARKERS LINEATTRS = (THICKNESS = 2);
 SERIES X = Month Y = LRain / LEGENDLABEL = 'London'
 MARKERS LINEATTRS = (THICKNESS = 2);
 XAXIS TYPE = DISCRETE;
 TITLE 'Average Monthly Rainfall in Olympic Cities';
RUN;
REFLINE STATEMENT
Reference lines can be added to any type of graph. In this case, lines have been added marking the average for the entire year for each city. The TRANSPARENCY= option on the REFLINE statement specifies that the reference line should be 50% transparent. The TRANSPARENCY option can also be used with other plot statements (see Table 1).

* Plot with REFLINE;
PROC SGPLOT DATA = Weather;
 SERIES X = Month Y = BRain;
 SERIES X = Month Y = VRain;
 SERIES X = Month Y = LRain;
 XAXIS TYPE = DISCRETE;
 REFLINE 2.03 4.78 1.94 / TRANSPARENCY = 0.5
 LABEL = ('Beijing(Mean)' 'Vancouver(Mean)' 'London(Mean)');
 TITLE 'Average Monthly Rainfall in Olympic Cities';
RUN;

INSET STATEMENT
The INSET statement allows you to add descriptive text to plots. Insets can be added to any type of graph.

* Plot with INSET;
PROC SGPLOT DATA = Weather;
 SERIES X = Month Y = BRain;
 SERIES X = Month Y = VRain;
 SERIES X = Month Y = LRain;
 XAXIS TYPE = DISCRETE;
 INSET 'Source Lonely Planet Guide'/ POSITION = TOPRIGHT BORDER;
 TITLE 'Average Monthly Rainfall in Olympic Cities';
RUN;
SYNTAX
The SGPLOT procedure can produce 15 different types of plots that can be grouped into five general areas: basic X Y plots, band plots, fit and confidence plots, distributions graphs for continuous DATA, and distribution graphs for categorical DATA. Many of these plot types can be used together in the same graph. In the examples, we used the HISTOGRAM and DENSITY statements together to produce a histogram overlaid with a normal density curve. We also used three SERIES statements together to produce one graph with three different series lines. However not all plot statements can be used with all other plot statements. Table 1 shows with statements can be used with which other statements. Table 1 also includes several options that can be used with many different plot statements as well as selected optional statements.
Table 1. Compatibility of SGPLOT procedure statements and selected options. If a check mark appears in the box then the two statements or options can be used together.

<table>
<thead>
<tr>
<th>Basic X Y Plots</th>
<th>SCATTER</th>
<th>SERIES</th>
<th>STEP</th>
<th>NEEDLE</th>
<th>BAND</th>
<th>REG</th>
<th>LOESS</th>
<th>PBSPLINE</th>
<th>ELLIPSE</th>
<th>HBOX/VBOX</th>
<th>HISTOGRAM</th>
<th>DENSITY</th>
<th>HBAR/VBAR</th>
<th>HLINE/LINE</th>
<th>DOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLOTNAME X=var Y=var / options;</td>
<td>✔️</td>
</tr>
<tr>
<td>Band Plots</td>
<td>✔️</td>
</tr>
<tr>
<td>BAND X=var UPPER=var LOWER=var / options; (You can also specify numeric values for upper and lower.)</td>
<td>✔️</td>
</tr>
<tr>
<td>Fit and Confidence Plots</td>
<td>✔️</td>
</tr>
<tr>
<td>PLOTNAME X=var Y=var / options;</td>
<td>✔️</td>
</tr>
<tr>
<td>Distribution Graphs – Continuous DATA</td>
<td>✔️</td>
</tr>
<tr>
<td>PLOTNAME response-var / options;</td>
<td>✔️</td>
</tr>
<tr>
<td>Distribution Graphs – Categorical DATA</td>
<td>✔️</td>
</tr>
<tr>
<td>PLOTNAME category-var / options;</td>
<td>✔️</td>
</tr>
<tr>
<td>Selected Options to Plot Statements</td>
<td>✔️</td>
</tr>
<tr>
<td>/GROUP=var;</td>
<td>✔️</td>
</tr>
<tr>
<td>/TRANSPARENCY=value;</td>
<td>✔️</td>
</tr>
<tr>
<td>/MARKERS;</td>
<td>✔️</td>
</tr>
<tr>
<td>/NOMARKERS;</td>
<td>✔️</td>
</tr>
<tr>
<td>/LEGENDLABEL='text-string';</td>
<td>✔️</td>
</tr>
<tr>
<td>/FILLATTRS=(attribute=val);</td>
<td>✔️</td>
</tr>
<tr>
<td>/LINEATTRS=(attribute=val);</td>
<td>✔️</td>
</tr>
<tr>
<td>/MARKERATTRS=(attribute=val);</td>
<td>✔️</td>
</tr>
<tr>
<td>Selected Optional Statements</td>
<td>✔️</td>
</tr>
<tr>
<td>INSET 'text-string'/options;</td>
<td>✔️</td>
</tr>
<tr>
<td>REFLINE;</td>
<td>✔️</td>
</tr>
<tr>
<td>REFLINE value-list /options;</td>
<td>✔️</td>
</tr>
<tr>
<td>XAXIS or YAXIS options;</td>
<td>✔️</td>
</tr>
</tbody>
</table>
Table 2 shows all the possible plot statements along with the basic syntax and selected options. The options listed in Table 2 are in addition to the options listed in Table 1 that apply to many of the plot statements. Even with all the options listed in these two tables, there are more. Each plot statement has many possible options – we have listed only a few that we thought were the most useful. For a complete list of available options, see the SAS Help and Documentation for SGPLOT.

Table 2. SGPLOT plot statements and selected options.

<table>
<thead>
<tr>
<th>SYNTAX</th>
<th>SELECTED OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCATTER X=var Y=var/options;</td>
<td>DATALABEL=var Displays a label for each DATA point</td>
</tr>
<tr>
<td>SERIES X=var Y=var/options;</td>
<td>BREAK Creates a break in the line for each missing value CURVELABEL Labels the series curve using the Y variable label</td>
</tr>
<tr>
<td>STEP X=var Y=var/options;</td>
<td>BREAK Creates a break in the line for each missing value CURVELABEL Labels the step curve using the Y variable label</td>
</tr>
<tr>
<td>NEEDLE X=var Y=var/options;</td>
<td>BASELINE=val Specifies a numeric value on the Y axis for the baseline</td>
</tr>
<tr>
<td>BAND X=var UPPER=var LOWER=var/options;</td>
<td>FILL NOFILL Specifies if fill is visible or not OUTLINE NOOUTLINE Specifies if outline is visible or not</td>
</tr>
<tr>
<td>REG X=var Y=var/options;</td>
<td>ALPHA=val Specifies confidence level CLI Displays confidence limits for individual predicted values CLM Displays confidence limits for mean predicted values</td>
</tr>
<tr>
<td>LOESS X=var Y=var/options;</td>
<td>ALPHA=val Specifies confidence level CLM Displays confidence limits INTERPOLATION= Specifies degree of interpreting polynomials: CUBIC or LINEAR</td>
</tr>
<tr>
<td>PBSPLINE X=var Y=var/options;</td>
<td>ALPHA=val Specifies confidence level CLI Displays confidence limits for individual predicted values CLM Displays confidence limits for mean predicted values</td>
</tr>
<tr>
<td>SYNTAX</td>
<td>SELECTED OPTIONS</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
</tbody>
</table>
| ELLIPSE | **ELLIPSE X=var Y=var/options;**

 ALPHA=val

 TYPE=

 Specifies confidence level for the ellipse

 Specifies type of ellipse: MEAN or PREDICTED

| HBOX/VBOX | **VBOX response-var/options;**

 CATEGORY=var

 MISSING

 A box plot is created for each value of the category variable

 Creates box plot for missing values of category variable

| HISTOGRAM | **HISTOGRAM response-var/options;**

 SHOWBINS

 SCALE=

 Places tic mark at midpoint of bin

 Specifies scale for vertical axis: PERCENT (default), COUNT or PROPORTION

| DENSITY | **DENSITY response-var/options;**

 SCALE=

 TYPE=

 Specifies scale for vertical axis: DENSITY (default), PERCENT COUNT or PROPORTION

 Specifies type of density function: NORMAL or KERNEL

| HBAR/VBAR | **VBAR category-var/options;**

 RESPONSE=var

 STAT=

 BARWIDTH=num

 Specifies a numeric response variable for plot

 Specifies statistic for axis of response variable (if specified): MEAN, or SUM (default)

 Specifies numeric value for width of bars. Default 0.8.

| HLINE/VLINE | **VLINE category-var/options;**

 RESPONSE=var

 STAT=

 Specifies numeric response variable for plot

 Specifies statistic for axis of response variable (if specified): MEAN, or SUM (default)

| DOT | **DOT category-var/options;**

 RESPONSE=var

 STAT=

 LIMITSTAT=

 Specifies numeric response variable for plot

 Specifies statistic for axis of response variable (if specified): MEAN, or SUM (default)

 Specifies statistic for limit lines (STAT=MEAN): CLM (default), STDDEV, or STDERR
In addition to the 15 plot statements, there are some optional statements that you might want to use. Table 3 shows some of these statements with selected options for the statements.

Table 3. Selected optional statements with selected options.

<table>
<thead>
<tr>
<th>SYNTAX</th>
<th>SELECTED OPTIONS</th>
</tr>
</thead>
</table>
| REFLINE | **SYNTAX** REFLINE value1 value2 .../ options;
| | **SELECTED OPTIONS**
| | **AXIS**= Specifies axis for reference line: X, Y (default), X2, or Y2
| | **LABEL**= () Creates labels for reference lines: (text1’ text2’ ...)
| | **LABELLOC**= Specifies placement of label with respect to plot area: INSIDE (default) or OUTSIDE
| | **LINEATTRS**= () Specifies attributes for reference line: (attribute=value)
| XAXIS/YAXIS | **XAXIS** options;
| | **YAXIS** options;
| | **GRID** Creates grid line at each tick on the axis
| | **LABEL**=‘text’ Specifies a label for the axis
| | **TYPE**= Specifies type of axis: DISCRETE, LINEAR, LOG, or TIME
| | **VALUES**= () Specifies values for tics on the axis: (num1,num2,...) or (num1 TO num2 BY increment)
| INSET | **INSET** ‘text1’ ‘text2’ ... / options;
| | **BORDER** Creates a border around text box
| | **POSITION**= Specifies position of text box within plot area: BOTTOM, BOTTOMLEFT, BOTTOMRIGHT, LEFT, RIGHT, TOP, TOPLEFT, or TOPRIGHT |
Several statements can use the LINEATTR, MARKERATTR, or FILLATTR options to change the appearance of lines, markers or fill (see Table 1). These options allow you choose values for the color of fill; the color, pattern and thickness of lines; and color, symbol, and size of markers. Table 4 gives the syntax for hard coding the values for these options. (Note that it is also possible to use styles to control these attributes – see the SAS Help and Documentation for more information.)

Table 4. The attribute options for plot statements.

<table>
<thead>
<tr>
<th>SYNTAX</th>
<th>ATTRIBUTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILLATTRS</td>
<td>/FILLATTRS=(attribute=value); COLOR= Specifies color for fill including: AQUA, BLACK, BLUE, FUCHSIA, GREEN, GRAY, LIME, MAROON, NAVY, OLIVE, PURPLE, RED, SILVER, TEAL, WHITE, and YELLOW</td>
</tr>
<tr>
<td>LINEATTRS</td>
<td>/LINEATTRS=(attribute=value); COLOR= Specifies color for fill including: AQUA, BLACK, BLUE, FUCHSIA, GREEN, GRAY, LIME, MAROON, NAVY, OLIVE, PURPLE, RED, SILVER, TEAL, WHITE, and YELLOW</td>
</tr>
<tr>
<td></td>
<td>PATTERN= Specifies pattern for line including: SOLID, DASH, SHORTDASH, LONGDASH, DOT, DASHDASHDOT, and DASHDOTDOT</td>
</tr>
<tr>
<td></td>
<td>THICKNESS=val Specifies thickness of line. Value can include units: CM, IN, MM, PCT, PT(default), or PX</td>
</tr>
<tr>
<td>MARKERATTRS</td>
<td>/MARKERATTRS=(attribute=value); COLOR= Specifies color for fill including: AQUA, BLACK, BLUE, FUCHSIA, GREEN, GRAY, LIME, MAROON, NAVY, OLIVE, PURPLE, RED, SILVER, TEAL, WHITE, and YELLOW</td>
</tr>
<tr>
<td></td>
<td>SIZE=val Specifies size of marker. Value can include units: CM, IN, MM, PCT, PT(default), or PX</td>
</tr>
<tr>
<td></td>
<td>SYMBOL= Specifies symbol for marker including: CIRCLE, CIRCLEFILLED, DIAMOND, DIAMONDFILLED, PLUS, SQUARE, SQUAREFILLED, STAR, STARFILLED, TRIANGLE, and TRIANGLEFILLED</td>
</tr>
</tbody>
</table>
CHANGING THE ODS STYLE
The following code creates a bar chart using the default ODS style. Since no destination is specified, the output will go to the LISTING destination. The default style for the LISTING destination is named LISTING, but it applies only to graphical output since in the LISTING destination, tabular output is rendered as plain text.

* Repeat bar chart with default style;
PROC SGPLOT DATA = World;
 VBAR Region / GROUP = PopGroup;
 TITLE 'Countries by Region and Population Group';
RUN;

You can use the STYLE= option in an ODS destination statement to specify a style for your output including graphs. The following ODS LISTING statement changes the style to JOURNAL.

* Change ODS style template;
ODS LISTING STYLE = JOURNAL;
PROC SGPLOT DATA = World;
 VBAR Region / GROUP = PopGroup;
 TITLE 'Countries by Region and Population Group';
RUN;

![Countries by Region and Population Group](chart.jpg)
CHANGING THE ODS DESTINATION
You can send ODS Graphics output to any ODS destination, and you do it in the same way that you would for ODS tabular output, using ODS statements for that destination. These statements send a bar chart to the PDF destination.

* Send graph to PDF destination;
 ODS PDF FILE = 'c:\MyPDFFiles\BarChart.pdf';
 PROC SGPLOT DATA = World;
 VBAR Region / GROUP = PopGroup;
 TITLE 'Countries by Region and Population Group';
 RUN;
 ODS PDF CLOSE;
CONCLUSIONS

ODS Graphics and the SGPLOT procedure introduce an exciting new way of producing high quality graphs using SAS. While PROC SGPLOT doesn't completely replace traditional SAS/GRAPH procedures, it does offer a wide variety of graphs using simple syntax. Because it is part of the Output Delivery System, you can use the same styles and destinations that you use for tabular output. We think you will like PROC SGPLOT.

REFERENCES

ABOUT THE AUTHORS

Lora Delwiche and Susan Slaughter are the authors of The Little SAS Book: A Primer, and The Little SAS Book for Enterprise Guide which are published by SAS Institute. The authors may be contacted at:

Lora D. Delwiche Susan J. Slaughter
(530) 752-9321 (530)756-8434
llddelwiche@ucdavis.edu susan@avocetsolutions.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.