The CDISC Study Data Tabulation Model (SDTM): History, Perspective, and Basics
Fred Wood
Octagon Research Solutions, Wayne, PA

ABSTRACT
The CDISC (Clinical Data Interchange Standards Consortium) SDTM is a standard for submitting data tabulations to the FDA in support of marketing applications. In July of 2004, this standard became a Study Data Specification (1) referenced in the eCTD Guidance (2). The FDA has announced on several occasions their intention to make the SDTM required by regulation (3-8). This paper/presentation will focus on the SDTM and the SDTMIG (SDTM Implementation Guide: Human Clinical Trials), but will also describe the regulatory climate around the SDTM, and provide an update on recent activities with SEND (Standard for Exchange of Nonclinical Data), an implementation of the SDTM for animal toxicology and pharmacology studies.

INTRODUCTION
NOTE TO READERS
In an attempt to make wading through the alphabet soup of acronyms, some of the more frequently used ones are listed at the end of this paper.

CDISC BACKGROUND
From its inception in 1997, CDISC (www.cdisc.org) has recognized the need for the establishment of standard data models to improve the process of electronic acquisition and exchange of clinical trials information for the benefit of all medical and pharmaceutical stakeholders. This is reflected in the mission statement:

"CDISC is an open, multidisciplinary, non-profit organization committed to the development of worldwide industry standards to support the electronic acquisition, exchange, submission and archiving of clinical trials data and metadata for medical and biopharmaceutical product development. The mission of CDISC is to develop and support global, platform-independent data standards that enable information system interoperability to improve medical research and related areas of healthcare."

CDISC STANDARDS
While the focus of this paper is the SDTM (developed by the CDISC Submission Data Standards [SDS] Team), it’s important to understand that the SDTM is just one of many standards being developed by CDISC. Others include the following:

- The Lab Model (LAB) was created for the transfer of lab data from vendors to sponsors. It can be implemented in ASCII, SAS®, or XML. The Lab model was the first CDISC model to become an HL7 (Health Level 7) standard. Extensions have been developed for ECG and microbiology data, and one is being developed for pharmacogenomics data.
- The Analysis Data Model (ADaM) is a set of guidelines and examples for analysis datasets used to generate the statistical results for submission to a regulatory authority such as FDA. It specifically addresses needs of statistical reviewers. The CDISC ADaM Team has developed a number of analysis-level standards, using the SDTM as the foundation. A sub-team formed with representatives from the ADaM and SDS Teams conducted a pilot project in 2006, and a summary of this has been posted on the CDISC website. In addition, an ADaM Implementation Guide was made available for public review in the first part of 2008. The ADaM and SDS Teams have been involved in discussions with the FDA around the submission of derived records, baseline flags, and population flags. All of these were requested by FDA representatives to be included in the tabulation data (SDTM); however, the teams agree they might more appropriately submitted as analysis data.
- The Protocol Representation Model (PRM) v1.0 was posted for review in April 2009. The PRM v1.0 is a clinical data standard that identifies, defines, and describes a set of over 100 common protocol elements, and maps those elements to the elements within the Biomedical Research Integrated Domain Group (BRIDG) model (see below). The PRM elements were developed so that protocol information could be reused and repurposed across multiple documents, databases, and systems from study start-up through reporting and regulatory submissions.
- Standard for Exchange of Nonclinical Data (SEND). SEND is an implementation of the SDTM specific to animal toxicology and pharmacology studies. More details on SEND are provided in a separate section below.
- The CDISC Terminology (CT) Team is working with representatives of government (FDA, NCI), academia, and pharmaceutical companies to identify and/or define standard lists of values for use in the clinical-data lifecycle. While initial efforts for CT were based upon the SDTMIG, this work has expanded to support other CDISC standards.
- Clinical Data Acquisition Standards Harmonization (CDASH) consists of a set of content standards (element name, definition, and related metadata) for a basic set of global data collection elements (based upon the SDTM) that will support clinical research studies. The CDASH effort has included all the modeled domains in the SDTMIG and is now, with support of AdvaMed, developing domains for devices data, including data for device properties, device accountability, and device malfunctions.
The SDTM originated as the Submission Data Model (SDM), developed by the CDISC Submission Data Standards (SDS) Team, which began meeting in 1999. It has been comprised of approximately thirty members who come from a cross-section of the pharmaceutical industry, including most major pharmaceutical companies, numerous small to mid-level pharmaceutical companies, CROs, and service providers. The SDS Team collaborates regularly through biweekly teleconferences, quarterly face-to-face meetings, and literally thousands of regular email communications. SDS Team meetings have been regularly attended by three key FDA observers representing the Office of Business Process Support, biostatistics, and medical review.

The concept that developed into the Study Data Tabulation Model (SDTM) v1.0 / Submission Data Standards (SDS) v3.1 was initially presented to the SDS Team by FDA liaisons in October 2002. Prior to that time, the SDS Team had developed the Submission Data Domain Models Version 1.0 (v1, 2001), and Version 2.0 (v2, early 2002), and was just about to publish v2.1. All of these versions focused on safety domains. While the v1 and v2 data concepts had been well received by industry, it was recognized there were a couple of major shortcomings. The revolutionary concept that the FDA proposed, termed Version 3.0 by the Team, addressed those major shortcomings by 1) providing a standard for all clinical trial data, not just safety data, and 2) providing a standard based on data modeling principles, rather than data management / operational database principles. This concept provided a consistent approach for modeling all clinical trial data using three primary data classes (Events, Interventions, and Findings).

The preliminary draft version of the SDTM concept was published in June of 2003 as the Submission Data Domain Models Version 3.0, or better known as SDS v3.0. The first version intended for implementation was published as two documents in June of 2004: the SDTM v1.0 (the model), and the SDTMIG v3.1 (the implementation guide). During the period from June 2003 to June 2004, there were a number of enhancements leading to the final approved version, many the result of a joint FDA/industry pilot to test SDS v3.0, and two public review/comment periods. Version 1.1 of the SDTM was published in April of 2005, followed by Version 3.1.1 of the SDTMIG four months later.

SDTM v.1.2 and SDTMIG v3.1.2 were posted for a 60-day public comment period in July 2007. Version 3.1.2 of the SDTMIG contained many additions and clarifications to v3.1.1, with more than thirty noteworthy changes for which comments were specifically solicited. In addition to responses to these, the SDS Team received close to a thousand comments, and spent the remainder of 2007 and most of 2008 addressing these. The final versions of SDTM v.1.2 and SDTMIG v3.1.2 were posted in January of 2009. It should be noted, however, that the FDA is not yet accepting datasets based upon these versions. SDS Team meetings have been regularly attended by three key FDA observers representing the Office of Business Process Support, biostatistics, and medical review.

REGULATORY EVENTS RELATED TO THE SDTM

Shortly after the publication of the first production versions of the SDTM and the SDTMIG in 2004, the FDA recognized the SDTM as an approved method for submitting the data-tabulation component of Case Report Tabulations (CRTs) in the then-draft eCTD guidance. Health and Human Services (HHS) announced in the December 2004 regulatory agenda (3) that the agency was moving towards requiring the submission of clinical trial data in a standard format.

In its 2004 Critical Path Report, the FDA presented its diagnosis of one of the scientific challenges underlying the medical product 'pipeline problem'. The report then laid out a path forward, beginning with extensive outreach and consultation with public and private stakeholders. Stakeholders confirmed this diagnosis and provided examples of scientific investments that could revolutionize medical product development. In January of 2005, Dr. Janet Woodcock, acting Director of CDER, met with
the CDISC Board of Directors (BoD) to review the FDA’s Critical Path Initiative. She clearly stated that industry adoption of the SDTM for submission of data for all clinical trials in marketing applications was a significant component of the FDA’s Critical Path Initiative, and asked the CDISC BoD for recommendations on how CDISC and the FDA could enhance their collaboration to promote quicker industry adoption of the SDTM.

On February 1, 2005, the FDA conducted a public meeting to review the status of industry adoption of the SDTM. Multiple FDA liaisons reviewed the importance of the SDTM and its value to both industry and FDA. They also confirmed that sponsors submitting data in the SDTM would not be required to submit data listings and patient profiles. FDA review tools will automatically produce data listings and patient profiles from properly formatted SDTM datasets. Additionally, FDA agreed to provide advance training to reviewers on the SDTM, and the review tools, when sponsors notify FDA in advance that they are submitting in the SDTM format. The FDA has recognized that ensuring this training occurs is a necessary component of SDTM implementation in industry.

In March 2006, the agency the FDA released The Critical Path Opportunities List (11) based on feedback from stakeholders and the special insights of FDA’s product reviewers. Item 44 on that list is entitled Development of Data Standards, and it mentions the SDTM in the following text:

“CDISC is paving the way by developing its Study Data Tabulation Model for describing observations in drug trials. That model could someday encompass observations needed for other types of trials. Health Level 7 and CDISC are working to create standards that can be used for the exchange, management, and integration of electronic healthcare information to increase the effectiveness and efficiency of healthcare delivery.”

Since late 2006, a number of Federal Register announcements have further indicated the FDA’s commitment to the SDTM. On September 29, 2006, the FDA announced the withdrawal of the three Electronic Submission Guidances for eNDA, eANDA, and eAnnual Reports (12). This notice designates eCTD as “preferred format for electronic submissions” and notes that beginning January 1, 2008, any electronic submission going to CDER must be eCTD.

In December of 2006, the FDA announced that there would be Notice of Proposed Rulemaking (NPRM) regarding the SDTM in March of 2007 (4). From this notice:

“The proposal would revise our regulations to require that data submitted for NDAs, BLAs, and ANDAs, and their supplements and amendments be provided in an electronic format that FDA can process, review, and archive. The proposal would also require the use of standardized data structure, terminology, and code sets contained in current FDA guidance (the Study Data Tabulation Model (SDTM) developed by the Clinical Data Interchange Standards Consortium) to allow for more efficient and comprehensive data review. “

The initial target date was March 2007, but this has been revised numerous times (4-7), most recently to September 2009 (8).

SDTM BASICS

The current CDISC Submission Data Standard consists of two documents: the Study Data Tabulation Model Version 1.2, and the Study Data Tabulation Model Implementation Guide: Human Clinical Trials Version 3.1.2, both with publication dates of November 12, 2008 (although they were not posted until January 2009). The first describes the model, while the second provides guidance on model implementation, including 1) domain models and examples with real data for commonly submitted datasets, 2) a set of assumptions to aid in interpretation and application of the intended implementation, 3) more detailed descriptions of the Trial Design Model (TDM) tables, and 4) a more detailed discussion on representing relationships within and across submission datasets. The SDTM is built around several key concepts. These are described in the following paragraphs.

DOMAINS

Domains are groups of related observations. These observations are grouped by topic in datasets. Datasets and domains are usually the same, but some domains contain more than one dataset.

OBSERVATIONS

Observations can be described by a series of named variables. Each variable, which normally corresponds to a column in a dataset, can be classified according to its role. Most variables in a domain begin with a prescribed prefix.

Example: In Study ABC001, Subject 1234-0001 had a heart rate of 100 bpm on Study Day 6. This would be represented in a dataset as follows:

<table>
<thead>
<tr>
<th>STUDYID</th>
<th>USUBJID</th>
<th>VSDY</th>
<th>VSTESTCD</th>
<th>VSORRES</th>
<th>VSORRESU</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC001</td>
<td>1234-0001</td>
<td>6</td>
<td>HR</td>
<td>100</td>
<td>BEATS/MIN</td>
</tr>
</tbody>
</table>
OBSERVATION CLASSES
An observation can be classified as one of three major types: Interventions, Events, or Findings. They can be described as follows:

- **Interventions**: investigational treatments, therapeutic treatments, and surgical procedures administered to the subject or animal. One record per constant dosing/treatment interval.
- **Events**: occurrences or incidents independent of planned study evaluations occurring during the trial (e.g., adverse events) or prior to the trial (e.g., medical history). One record per event.
- **Findings**: observations resulting from planned evaluations (e.g. lab tests, ECGs, microscopic findings). One record per finding result or measurement. The latest versions of the SDTM and SDTMIG describe a specialization of the Findings class referred to as Findings About.

Each observation class has a defined set of standard variables. These standard variables, along with Identifiers and Timing Variables, both of which can be used in all observation classes, are the building blocks for constructing SDTM domains. Variables other than the standard ones for each class must be represented in a SUPPQUAL dataset (to be discussed later). The observation classes for the domains modeled in the SDTMIG are shown below.

Interventions
- Concomitant Medications
- Exposure
- Substance Use

Events
- Adverse Events
- Clinical Events
- Disposition
- Medical History
- Protocol Deviations

Findings
- Drug Accountability
- ECG Test Results
- Inclusion/Exclusion Criterion Not Met
- Laboratory Test Results
- Microbiology Specimen
- Microbiology Susceptibility Test
- Physical Examination
- PK Concentrations
- PK Parameters
- Questionnaires
- Subject Characteristics
- Vital Signs

Special-Purpose Domains
- Demographics
- Comments
- Subject Elements
- Subject Visits

Relationship Datasets
- Supplemental Qualifiers
- Related Records

Trial Design Model
- Trial Arms
- Trial Elements
- Trial Visits
- Trial Inclusion/Exclusion Criteria
- Trial Summary

Findings About

VARIABLE ROLES
Every variable has been assigned a Role that describes the type of information conveyed by each variable within an observation. These Roles are defined in the SDTM:

- **Topic Variable** - Identifies the focus of the observation. There is only one per dataset.
- **Identifier Variables** - Identify the study, the subject, the domain, and sequence number of the observation.
- **Timing Variables** - Describe the start and end of the observation, and/or when it was collected.
- **Qualifier Variables** - Describe the attributes and results of the observation. These can be further subdivided into Grouping, Result, Synonym, Record, and Variable Qualifiers.

DATASET AND VARIABLE METADATA
Each dataset or table is accompanied by metadata definitions (define.pdf or define.xml) at two levels. The first is the dataset level, where the datasets, their descriptions, class, structure, purpose, keys, and file location are described. The second level is variable levels metadata that provides information about the variables used in each dataset. Included are the variable name, variable label, the (data) type, controlled terms or format, the origin (e.g., CRF, derived), the role (as described above), and any comments about a variable or its data.

ADDITIONAL DATASETS AND TABLES THAT NEED TO BE SUBMITTED
In addition to data submitted in accordance with the three observation classes, there are a number of special-purpose datasets that are also part of the SDTM. Included are the Demographics, Comments, Subject Elements, and Subject Visits datasets; the Supplemental Qualifiers datasets (one SUPP-- dataset per domain, with the hyphens representing the two-letter domain code); the RELREC (Related Records) dataset; and five TDM datasets.

The Demographics dataset includes a set of standard variables that describe each subject in a clinical study. The Comments domain is a fixed domain that provides a solution for submitting free-text comments related to data in one or more domains or collected on a separate CRF page dedicated to comments. The Comments dataset is similar to the SUPPQUAL dataset but it allows for one comment to span multiple variables (COVAL-COVALn) in order to accommodate comments longer than 200
The Supplemental Qualifiers special-purpose dataset is used to submit values for variables not presently included in the multiple ECG measurement records to a single SUPPQUAL record. IDVAR to express relationships other than one to one. An example would be using --GRPID (Grouping Identifier) to relate identifier variable and its value. Other variables aside from --SEQ, such as Grouping Qualifiers and Identifiers, can be used in that point to the related record. These two variables are IDVAR and IDVARVAL, which describe the parent record’s unique identifier variable and its value. Other variables aside from --SEQ, such as Grouping Qualifiers and Identifiers, can be used in IDVAR to express relationships other than one to one. An example would be using --GRPID (Grouping Identifier) to relate multiple ECG measurement records to a single SUPPQUAL record.

The Supplemental Qualifiers special-purpose dataset is used to submit values for variables not presently included in the general-observation-classes and the Demographics domain. In addition to the keys described in the previous paragraph, each Supplemental Qualifiers record also includes the name of the Qualifier variable being added (QNAM), the label for the variable (QLABEL), the actual data value for each instance or record (QVAL), the origin (QORIG) of the value (e.g., whether it was collected via CRF, or derived), and the Evaluator (QEVAL, to specify the role of the individual who assigned the value, such as an Adjudication Committee or the sponsor).

Another common reason for using a SUPPQUAL dataset is to capture attributions. An attribution is typically an interpretation or subjective classification of one or more observations by a specific evaluator, such as a population flag that classifies a subject or their data according to their evaluability for efficacy analysis. Since it is possible that different attributions may be necessary in some cases, SUPPQUAL provides a mechanism for incorporating as many attributions as are necessary. For example, if two individuals provide a determination on whether an adverse event is treatment emergent (e.g., the investigator and an independent adjudicator) then separate QNAM values should be used for each set of information, perhaps AETRTEM and AETRTEM2. This is necessary to ensure that reviewers can join/merge/transpose the information back with the records in the original domain without risk of losing information.

The Related Records (RELREC) dataset is used to describe collected relationships between records in two (or more) datasets, such as an Event record and an Intervention record, or a Finding record and an Event record. One example would be the collection of an Adverse Event number on a Hospitalization or Lab page. RELREC should be not be used to determine associations after the fact (e.g., as part of the analysis process). Relationships are described by creating RELREC records for each of the related observation records, and then by assigning a unique character identifier value for the relationship. Each RELREC record contains same keys as SUPPQUAL to identify a record (using --SEQ in IDVAR) or group of records (using --GRPID in IDVAR). RELREC uses an additional, unique variable, RELID, the relationship identifier, which is the same for all related records. The value of RELID can be any value chosen by the sponsor.

THE TRIAL DESIGN MODEL (TDM)

The TDM allows description of key aspects of the planned conduct of a clinical trial in a standardized way. These standardized descriptions will allow reviewers to:

- clearly and quickly grasp the design of a clinical trial
- compare the designs of different trials
- search a data warehouse for clinical trials with certain features
- compare planned and actual treatments and visits for subjects in a clinical trial

Modeling a clinical trial in this standardized way requires the explicit statement of certain decision rules that may not be addressed, or may remain vague or ambiguous, in the usual prose protocol document. Prospective modeling of the design of a clinical trial should lead to a clearer, better protocol. Retrospective modeling of the design of a clinical trial should ensure a clear description of how the trial was interpreted by the sponsor.

The TDM is built upon the concepts of Elements, Arms, Epochs, and Visits. They are shown in Figure 1, and can be described as follows:
Figure 1. Key Concepts of Trial Design

- An Element is the basic building block for a discrete treatment period (or constant-dosing interval) within a clinical trial. Planned Elements are described in the Trial Elements (TE) table, which includes a description of the treatment(s) are planned for subjects in that Element, rule for starting the Element, a rule for ending the Element, and a planned duration (if it’s fixed and not conditional).

- An Arm is a planned sequence of Elements, and is usually equivalent to a treatment group. The Trial Arms (TA) table describes the sequence of elements within each Arm, as well as rules for branching and transitions. The Demographics domain contains the name of the Arm to which the subject was randomized.

- A Visit is defined as a clinical encounter that encompasses planned and unplanned trial interventions, procedures, and assessments that may be performed on a subject. Planned visits are described in the Trial Visits (TV) table. A Visit has a start and an end, each described with a rule. Different Arms can have different planned-visit schedules. A Visit need not be nested within a single Element. In other words, it may start in one Element and end in another.

- The term Epoch is used to describe a period of time that cuts across Arms, and applies to the trial as a whole. Epochs may contain the same number or a different number of Elements for each Arm. Epochs are defined only in the TA table.

- The concept of Study Cells was introduced in SDTMIG v.3.1.2. A Study Cell is defined as the intersection of an Arm and an Epoch. A Study cell may contain one or more Elements. When there is one Element in a Study Cell (as is the case in the above diagram), distinguishing between the Element and the Study Cell adds little value. If, however, there are multiple Elements in a Study cell, distinguishing between the two concepts may be useful.

The TDM also includes the Trial Inclusion/Exclusion (TI) and Trial Summary (TS) datasets. The TI table is used to describe the protocol-specified inclusion/exclusion criteria used for all subjects. This is contrast to the IE domain, which contains the subject-specific exceptions to those criteria (i.e., criteria not met) for subjects included in the submission data. TS is used to submit trial-level summary information, examples of which include the blinding schema, drug indication, and trial objectives.

THE STANDARD FOR EXCHANGE OF NONCLINICAL DATA (SEND)

As noted in the Introduction, SEND is an implementation of the SDTM for nonclinical studies. The work on this standard began in 2002, and an FDA pilot project was announced in January of 2003. The pilot tested Version 1.0 for data from acute, subchronic, and carcinogenicity studies. Input from the pilot, as well as efforts to more closely align this implementation with that for human clinical trials, resulted in the Version 2.x standards. The latest of these was v2.3, posted in November 2005. None, however, were officially endorsed by the FDA for regulatory submissions.

From 2005 until May 2007, activity on SEND was limited to the development of Safety/Pharmacology domains by a small subteam. Included were domains for Respiratory Measurements, Hemodynamic Measurements, and Central Nervous System Tests. In addition, the subteam demonstrated the successful creation of analysis datasets from the SEND data format.

In May of 2007, the interest in SEND resumed for two reasons: 1) a number of pharmaceutical companies, contract research organizations, technology vendor were interested in developing SEND for use a data transfer standard (vendor to sponsor) in addition to its original purpose as a data submission standard, and 2) the FDA was interested creating a Janus database for nonclinical data. The FDA subsequently announced a regulatory pilot in October 2007 (13). The SEND Core Team re-formed, and a number of new SEND subteams were created.

The primary product of the SEND Core team has been the creation of a SEND Implementation Guide (SENDIG) for use in the FDA pilot project. The current version has been named V3.0 Draft A to signify that it’s a major change from v2.3, and that it’s a draft for pilot use only. In this version, all the v2.3 domains were overhauled, new domains were created, and the implementation advice was greatly expanded to ensure consistency with the improvements made in the SDTMIG (v3.1.1 as well as v3.1.2). As a result, it has grown to 235 pages from the 68 pages that comprised v2.3. The domains defined and modeled include the following:
The Terminology Subteam has been defining comprehensive sets of standard terminology, leveraging the work from the CDISC Controlled Terminology and Glossary Teams, as well as with the National Cancer Institute’s Enterprise Vocabulary Services (NCI EVS).

The Reproductive Toxicology Subteam renewed earlier efforts to develop domains for reproductive toxicity studies. These studies can be complex due to 1) the staggered timing of the phases of gestation and weaning within treatment groups, and 2) the relationships that need to be maintained between mating partners and between parents and offspring, possibly through multiple generations. Domains modeled so far include Mating Activity Data, Individual Implant Observations, Fetus and Neonatal Developmental Abnormalities, C-Section and Delivery and Litter Survival Findings (Individual Dam Level), Behavior Data, and Developmental Signs.

THE FUTURE

REGULATORY CLIMATE

One can get a glimpse into the future by looking at one of the more recent federal Register announcements (14) that are part of an ongoing effort to improve the efficiency of the review of study data within CDER. In August of 2008, the FDA announced a pilot project to test the submission and processing of electronic clinical study data provided in a standardized format. The goals are listed as follows:

1. To test the electronic processing of standardized clinical study data, including the successful validation and loading of data into the Janus study repository and subsequent access to that data by reviewers using a combination of analytical and visualization tools. Janus will provide a stable foundation for FDA’s growing list of standard review tools, developed through Cooperative Research and Development Agreements (CRADAs) with various vendors. The tools have been developed to utilize the SDTM, rather than vice versa. Most of these tools create tabular and/or graphical views of the SDTM data via canned reports, although custom reports can be run as well. The tools routinely bring demographics and treatment data into all views of subject data, utilizing the fixed relational database structure of Janus (upon which much of the SDTM is based). Many tools also provide built-in hyperlinks that allow drilling down from group summaries to individual-subject data, and to navigate from graphs to tables. Some allow for various “what-if” scenarios, such as allowing the elimination of outlying values from the calculation of means.

2. To test a new XML-based submission format for CDISC content (known now as the CDISC-HL7 message). The FDA has recognized the limitations of SAS transport files, and is moving towards a new, more robust XML-based submission format. The FDA is currently working within the HL7 RCRIM (Regulated Clinical Research Information Management) Technical Committee to develop a set of XML messages for standardized clinical study data content as defined by CDISC. There are currently four messages included. Study Design, Study Participation, and Subject Data are under development. These are being harmonized with the SDTM as much as possible. The Individual Case Safety report (ICSR) already exists, but has not yet been tested for clinical study data.

3. To extend the Janus logical data model and service-oriented architecture to support submission of CDISC-HL7 messages. The current Janus model was largely tied to SDTM content. Since the HL7 message will be more robust, changes in Janus will be needed.

4. To integrate with NCI’s Enterprise Vocabulary Service (EVS). As mentioned above, the CDISC Controlled Terminology Team has been working with EVS for a number of years.
5. To test the integration and analysis of clinical study data stored in Janus with pharmacogenomic data currently being received through the Voluntary Genomic Data Submissions (VGDS) program. Since there is no submission standard for this program at the current time, integration of this data into a single database will take some time.

The FR notice also mentions that CDER expects to update its study data specifications as part of the continuing process to improve the quality of clinical study data provided electronically.

THE FUTURE OF THE SDTM

The SDTM will continue to be the basis for much of the content of the HL7 message and for some of the views of the data from Janus. With that in mind, SDS subteams are working to improve guidance on the submission of metadata, and the submission of data in the Exposure and Questionnaire domains. SDTM-based special-interest groups continue to work on new domains for oncology and pharmacogenomics data.

The SDTM and SDTMIG continue to be the basis for SEND as well as much of the CDASH and ADaM standards.

CONCLUSION

The regulatory status of the SDTM and the submission format notwithstanding, it is to a sponsor’s advantage to move toward implementation of the SDTM for submission datasets. Once FDA reviewers become accustomed to being able to easily navigate through standard data using dedicated tools, being unable to do so for subsequent submissions will lead to inefficiencies in the review process.

REFERENCES

ACKNOWLEDGEMENTS

The author would like to thank the following:

- Members of the CDISC SDS Team for their countless hours invested in bringing the SDTM and its Implementation Guide to realization.
- Members of the CDISC SEND Team for their energy and enthusiasm in developing industry-wide standards for nonclinical data for both operational and submission use.
- My colleagues at Octagon with whom I’ve had numerous enjoyable and thought-provoking discussions around all aspects of SDTM implementation.
- FDA Liaisons to the CDISC SDS and SEND Teams for their continued support.
The leadership and members of the Clinical Data Management Department at Procter & Gamble Pharmaceuticals, whose vision for data standards allowed my involvement with the SDS Team and CDISC, beginning in 1999.

SOME OF THE ACRONYMS USED IN THIS PAPER

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADaM</td>
<td>Analysis Data Model</td>
</tr>
<tr>
<td>BRIDG</td>
<td>Biomedical Research Integrated Domain Group</td>
</tr>
<tr>
<td>CDASH</td>
<td>Clinical Data Acquisition Standards Harmonization</td>
</tr>
<tr>
<td>CDISC</td>
<td>Clinical Data Interchange Standards Consortium</td>
</tr>
<tr>
<td>CRT</td>
<td>Case Report Tabulation(s)</td>
</tr>
<tr>
<td>CRT-DDS</td>
<td>Case Report Tabulation Data Definition Specification</td>
</tr>
<tr>
<td>CT</td>
<td>Controlled Terminology</td>
</tr>
<tr>
<td>eCTD</td>
<td>electronic Common Technical Document</td>
</tr>
<tr>
<td>HL7</td>
<td>Health Level 7</td>
</tr>
<tr>
<td>ICSR</td>
<td>Individual Case Safety Report</td>
</tr>
<tr>
<td>NPRM</td>
<td>Notice of Proposed Rulemaking</td>
</tr>
<tr>
<td>ODM</td>
<td>Operational Data Model</td>
</tr>
<tr>
<td>PRM</td>
<td>Protocol Representation Model</td>
</tr>
<tr>
<td>SDS</td>
<td>Submission Data Standards</td>
</tr>
<tr>
<td>SDTM</td>
<td>Study Data Tabulation Model</td>
</tr>
<tr>
<td>SDTMIG</td>
<td>SDTM Implementation Guide: Human Clinical Trials</td>
</tr>
<tr>
<td>SEND</td>
<td>Standard for Exchange of Nonclinical Data</td>
</tr>
<tr>
<td>SENDIG</td>
<td>SEND Implementation Guide</td>
</tr>
<tr>
<td>TDM</td>
<td>Trial Design Model</td>
</tr>
<tr>
<td>XML</td>
<td>eXtensible Markup Language</td>
</tr>
</tbody>
</table>

CONTACT INFORMATION

Fred Wood, Ph.D.
Vice President, Data Standards Consulting
Octagon Research Solutions, Inc.
585 East Swedesford Road, Suite 200
Wayne, PA 19087
610-535-6500 x5418
fwood@octagonresearch.com